loading page

Numerical Study of Oil Jet Cooling in Electric Traction Motors with Hairpin Windings
  • Waruna Maddumage ,
  • Alasdair Cairns ,
  • Amin Paykani
Waruna Maddumage
Author Profile
Alasdair Cairns
Author Profile
Amin Paykani
Author Profile


Hairpin winding technology, combined with direct oil jet impingement cooling, is a viable solution known to increase volumetric power density and efficiency in the next generation of traction motors. However, the coolant fluid interaction with the complex winding geometry has not yet been fully examined; specifically, with the use of high-fidelity CFD simulations. Thus, the present work investigates the radial and axial oil impinging jets in a hairpin winding motor using multi-phase simulation. The study first analyses power losses and temperature distribution of the motor under the Worldwide Harmonised Light Vehicle Test Procedure (WLTP). Next, the performance of axial and radial jet impingement is numerically analysed by considering the fluid flow. Finally, the two configurations are compared in terms of their oil film formation rate. The results indicate that the maximum power losses observed in typical driving conditions are considerably lower than the maximum losses predicted for the complete operational region of the motor. Moreover, the axial impinging jet shows a higher oil film formation rate compared to a radial jet impingement configuration within the examined conditions.
Manuscript accepted to publication in WEMDCD 2023 IEEE conference.
© 20XX IEEE.  Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.