IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, XX XXXX 1

Joint beamforming and compressed sensing for
uplink grant-free access

Guoqing Xia, Pei Xiao, Senior Member, IEEE, Bohan Li, Yue Zhang, Senior Member, IEEE, Huiyu Zhou

Abstract—Compressed sensing (CS)-based techniques have
been widely applied in the grant-free non-orthogonal multiple
access (NOMA) to a single-antenna base station (BS). In this
paper, we consider the multi-antenna reception at the BS for
uplink grant-free access for the massive machine type communi-
cation (mMTC) with limited channel resources. To enhance the
overloading performance of the BS, we develop a general frame-
work for the synergistic amalgamation of the spatial division
multiple access (SDMA) technique with the CS-based grant-free
NOMA. We derive a closed-form statistical beamforming and a
dynamic beamforming scheme for the inter-cluster interference
suppression when applying SDMA. Based on this, we further
develop a joint adaptive beamforming and subspace pursuit (J-
ABF-SP) algorithm for the multiuser detection and data recovery,
with a novel sparsity level decision method without the accurate
knowledge of the noise level. To further improve the data
recovery performance, we propose an interference cancellation-
based J-ABF-SP scheme (J-ABF-SP-IC) by using the initial signal
estimates generated from the J-ABF-SP algorithm. Extensive
simulation results verify the superior user detection and signal
recovery performance of our proposed algorithms in comparison
with existing CS-based grant-free NOMA techniques.

Index Terms—mMTC, Grant-free access, NOMA, Beamform-
ing, Subspace pursuit, Joint optimisation, Interference cancella-
tion.

I. INTRODUCTION

The massive machine type communication (mMTC), e.g.,
the internet of things (IoT), emerged in the 5G era, will still
play a critical role in the forthcoming beyond 5G and even
6G eras. Non-orthogonal multiple access (NOMA) has been
identified as an enabler to support the massive connectivity
with limited channel resources [1-5]. Another characteristic
of mMTC is sporadic data transmission, i.e., at any time only
a small fraction of potential users are active and transmit
small data packets [6-9]. In this case, the conventional grant-
based NOMA techniques will cause the large access delay and
signalling overhead. Therefore, an efficient communication
paradigm shift is necessary to enable the low-latency and high-
reliability mMTC applications.
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A. Related Work

Recently, grant-free NOMA methods have been envisioned
as feasible solutions for mMTC. In the uplink grant-free
access, the active users (users) transmit data via the available
channel resources that the BS broadcasts periodically, without
going through the complicated channel access request and
granting process [9, 10]. Thus, the grant-free access is effective
in reducing the access delay and signalling overhead due to
the sporadic and small-scale data transmission in the mMTC
scenario. However, in the grant-free access, the BS cannot
identify the active users before data transmission without the
granting process. Thus, for reliable uplink communications,
blind user activity detection is necessary via the superimposed
received signal of the active users.

Current coherent grant-free access schemes can be classified
into two categories according to the method of channel esti-
mation and user activity detection [11]. For the first grant-free
access type, the preambles of the active users are transmitted to
the BS for channel estimation and user activity detection, and
the coherent data detection is then performed at the BS based
on the previously estimated channel state information [12—-15].
For the second grant-free access type, the channel information
of all the users are estimated based on pilots in the first stage,
and subsequently within the coherence time, the joint user
detection and data recovery is performed at the BS [16-19].
In addition, some non-coherent grant-free access methods are
proposed for some specific applications, e.g., unmanned aerial
vehicle (UAV) assisted massive [oT [11] and massive multiple-
input-multiple-output (MIMO) [12]. In this paper, we focus on
the joint user detection and data recovery for the second grant-
free access for mMTC.

The sporadic transmission in mMTC gives rise to the sparse
received signal with high probability. Compressed sensing
(CS) techniques are promising in recovering the sparse signals
from the far fewer samples than those required by the classic
Nyquist sampling [20-24]. Accordingly, the number of neces-
sary resource elements for data transmission can be reduced
when considering the CS-based receiver. The CS-based grant-
free NOMA necessitates judicious transceiver design. At the
transmitter, the active users modulate the information bits into
symbols, and spread them onto specific subcarriers by using
non-orthogonal signatures for transmissions. The widely used
spreading schemes include low density signature (LDS) [1],
sparse code multiple access (SCMA) [2, 3, 25, 26], etc.. At
the receiver, the received signals on different subcarriers are
used for the user activity detection and signal recovery by CS
techniques. Extensive CS-based sparse signal recovery meth-
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ods have been proposed, including the orthogonal matching
pursuit (OMP) [20], compressed sampling matching pursuit
(CoSaMP) [22], subspace pursuit (SP) [23] and approximate
message passing (AMP) method [24], etc.. These methods
require prior knowledge of the user sparsity level, which is
often impractical in engineering applications.

Furthermore, considering the consecutive data transmission
in different slots in mMTC scenarios, the temporal correla-
tion for the user activity has been utilised to enhance the
communication performance in grant-free NOMA systems
[16-19, 27-30]. The assumptions on the temporal correlation
of the user activity can be classified into two categories.
The first one is that the user activity stays unchanged in
one frame, called frame-wise (block) sparsity. Based on this
assumption, the modified AMP [16], SP [17] and block-
coordinate-descent (BCD) [18] methods were developed for
the frame-wise user activity detection and data recovery in
grant-free NOMA. These methods do not require the prior
user sparsity level but need to estimate it based on the prior
noise power. To avoid using the prior information of the noise
level, the authors in [17] proposed a cross-validation-based
method to determine the user sparsity level. The authors in
[19] considered an orthogonal approximate message passing
(OAMP)-multiple measurement vector (MMYV) algorithm with
simplified structure learning (SSL) and accurate structure
learning (ASL), termed as OAMP-MMV-SSL and OAMP-
MMV-ASL, respectively. These two methods can iteratively
estimate the user sparsity ratio and the noise variance using
the expectation maximisation [19].

The second is the dynamic user sparsity assumption, i.e., the
user activity can be different in consecutive slots. A dynamic
CS method [27] and a modified SP method [28] were proposed
to improve the active user estimates in consecutive slots based
on the temporal correlation between one another. The weighted
l2,1 minimisation model-based method was developed for the
enhanced performance in detecting the users with dynamic
sparsity [29]. In addition, the first bit with value 0 or 1 in the
data payload was used to determine whether the active user
has data to transmit in the current time slot [30]. All of these
methods require the noise level as the prior information.

The aforementioned methods are usually developed for the
grant-free NOMA system with a single-antenna BS. Recently,
[13] demonstrated that, both the missed user detection and
the false alarm probabilities can always converge to zero by
utilising the vector AMP algorithm [24], in the asymptotic
massive MIMO regime. A joint spatial-temporal-structured
adaptive SP method was proposed for grant-free NOMA to
jointly estimate channels and detect users by considering the
block sparsity over multiple slots and multiple antennas [31].

Accurate sparse signal recovery necessitates a large number
of spectrum resources for massive connectivity with current
CS-based grant-free NOMA techniques, even though they
can enable the system to operate in overloaded conditions
to some extent. The spatial division multiple access (SDMA)
technique characterised by the multiple-antenna BS has been
proven to be effective in supporting massive connectivity,
especially when intergrating with the power-domain NOMA
techniques [32-37]. As shown in Fig. 1, the SDMA can

cope with the simultaneous transmissions of multiple users
sharing the same spectrum resources aided by an advanced
interference mitigation technique, e.g., digital beamforming.
It is a promising solution to integrate the SDMA with the CS-
based grant-free NOMA technique in mMTC applications for
improved spectral efficiency. However, to our best knowledge,
there is no work in open literature that has taken this into
consideration.

B. Our Contribution

In this paper, we study the multiuser detection (MUD)
and data recovery (DR) for the uplink grant-free NOMA
to a multiple-antenna BS. We consider i) the first temporal
correlation assumption, i.e., the frame-wise block sparsity
for each user; ii) the second coherent grant-free access type
with the channel information estimated using pilots before the
data transmission. Massive users are assumed to be clustered
according to the channel correlation, based on which the
multi-antenna reception can be combined by beamforming
to suppress the inter-cluster interferences. For users within
the same cluster, the CS-based grant-free NOMA method is
utilised for the MUD and DR based on the combined signal
by beamforming. The main contributions are summarised as
follows.

1) We develop a closed-form statistical beamforming (SBF)
and a dynamic beamforming (DBF) scheme. With a proper
channel correlation-based user clustering, these two beam-
forming schemes can effectively suppress the inter-cluster
interferences even though the total number of active users is
far larger than the number of antenna elements of the BS.

2) We design a general framework for the integration of the
SDMA and grant-free NOMA scheme. The spatial clustered
users can be distinguished and served by multiple beams
simultaneously. Under this framework, the beamforming and
the signal estimate are jointly and alternatively optimised.
This optimisation process can be performed in parallel for
different user clusters, which significantly reduces the access
latency. The same spectrum resources are utilised by all the
user clusters, which brings a multifold increase in the spectral
efficiency.

3) As a realisation of the developed framework, we propose
a joint adaptive beamforming and subspace pursuit (J-ABF-
SP) algorithm for the uplink grant-free access. At each itera-
tion of the J-ABF-SP algorithm, the adaptive beamforming and
adaptive subspace pursuit are performed alternatively for the
joint user detection and signal recovery. A robust user sparsity
level decision method is introduced without knowing the noise
level.

4) We also devise an interference cancellation (IC) scheme
to further enhance the MUD and DR performance, which is
termed as J-ABF-SP-IC. Based on the results of user activity
detection and initial signal estimates via the J-ABF-SP algo-
rithm, the received signal for each cluster can be reconstructed.
By using the reconstructed signal, the interference-cancelled
received signal for each cluster can be obtained. Then, the
signal estimation and beamforming are alternatively optimised
through similar procedures in the J-ABF-SP algorithm.
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5) Simulation results verify that the J-ABF-SP algorithm
can achieve superior MUD and DR performance in compari-
son with the benchmark methods at the cost of moderately
increased complexity. Moreover, the performance of the J-
ABF-SP-IC algorithm can be further enhanced with slightly
increased complexity. In addition, compared to the existing
methods, the integration of the SDMA and grant-free NOMA
in this paper can markedly improve the spectral efficiency.

The remainder of the following parts of this paper is
organised as follows. Section II describes the signal model
and problem formulation. Section III introduces the proposed
beamforming schemes. Section IV details the proposed joint
optimisation algorithms for the beamforming and data recov-
ery. Section V gives the computational complexity analysis.
Section VI illustrates the simulation results. Section VII con-
cludes this paper.

Notation: C denotes the field of complex numbers. Scalars
are denoted by lower-case letters, vectors and matrices re-
spectively by lower- and upper-case boldface letters. The
conjugate, transpose, conjugate transpose and Moore-Penrose
(M-P) inverse are denoted by (-)*, (-)T ()" and (-)T, respec-
tively. E{-} and | - | denote the mathematical expectation and
modulus, respectively. vec{-} vectorizes a matrix by stacking
each column of it on top of one another. vec™!(c, T') generates
a matrix with 7 rows by performing inversely vectorisation to
the vector ¢. ||-||2 denotes the I3 norm of a matrix. ||-||o denotes
the [y norm of a vector, i.e., the number of non-zero elements
of it. The notations min{-} and max{-} denote the minimum
and maximum element of the enclosed set {-}, respectively.
The notation ® denotes the Kronecker product.

II. SIGNAL MODEL AND PROBLEM FORMULATION

We consider the spreading-based grant-free NOMA in a
multiple-antenna cellular system to support the mMTC with
limited channel resources. As shown in Fig. 1, N@Q users
(devices) are grouped into N clusters ' according to their
channel correlation by using common clustering methods,
such as K-means [33, 36, 38]. Without loss of generality, the
equal-size clusters are assumed, e.g., () users in each cluster
n =1,2,---  N. The BS is equipped with a uniform linear
array with M antenna elements while all users are with a
single antenna. All user clusters employ the same frequency
resources, i.e., ) subcarriers, for simultaneous communication
with the BS. To support mMTC, we consider an overloaded
system with K < NQ 2.

A. Signal Model

The gth user in cluster n is expressed by u,, 4. The spreading

; ; el &2 KT
signature for u,, 4 is denoted as sy, ¢ = [y, 45 S 45" » Sn.q)
with sk o representing the spreading factor on subcarrier k for

user u, 4 [18, 19, 29]. Non-orthogonal non-sparse spreading

IThe use cases involve Industry IoT, e.g., a smart factory where lots of
sensors perform some monitoring and transmission tasks and sensors in the
close direction can be clustered for grant-free access.

2In fact, K < @ can be satisfied since we consider all clusters use the
same spectrum resource.

user cluster

Fig. 1: System architecture of the integration of SDMA and grant-free
NOMA

signatures are employed in this paper, e.g., Zadoff-Chu se-
quences [39]. Assuming the line-of-sight transmission only,
the angle of arrival (AoA) from user u, 4 can be denoted as
0,4 and the steering vector is defined as,

dsin(6,, 4)
Ay = jom———1=

dsin(0, 4)7"
1 e A A

jom(M—1)
e

1
where e is the Euler’s number, A is the carrier wavelength
and d is the distance between the adjacent antenna elements,
usually set to be a half wavelength \/2. The channel gain
vector g € CM*1 between the user uy, , and the multiple-
antenna BS using subcarrier k£ can be modelled as the product
of the channel fading and the steering vector, defined as
gfm = fff’qanyq, where the channel fading f,’;q = pn,qnﬁyq
consists of the large-scale fading p,, 4, including the path loss
and shadowing fading, and the small-scale random fading
777’;’7(1 following the standard complex Gaussian distribution.
We assume a slow-fading channel which remains unchanged
within a coherence time interval (longer than the frame length
of the mMTC).

The received signal at the BS on subcarrier k£ and at slot ¢
can be formulated as,

N Q
k _ k _k k
Yy = anl Zq:;L Gn,q5n,qTn,q,t T V¢
N ~
§ : k k
- ne=1l Gn$77,,t + Uy, (2)

where x,, 4.+ is the transmitted signal of user u,, 4 at the current
slot ¢, x,, ; is the transmitted signal vector with its gth entry
being x,, 4.+, and vf is the additive Gaussian noise vector. The
equivalent channel gain matrix for cluster n on subcarrier k

is GE £ [gk gk, gk o) € CM*Q with the equivalent
channel gain vector gk £ sk gk .~ ¢=1,2,---,Q.

Since the users are clustered by channel correlation, beam-
forming can be performed to suppress the inter-cluster inter-
ference signals at the BS. For any cluster n = 1,2,--- | N,
the multi-antenna received signal on subcarrier k is combined
by beamforming, i.e.,

e SN 1</ TR LI NC)
where N is the index set of all clusters, and b, is the
beamforming weight vector for cluster n.

Cascading yfw by £ = 1,2,--- , K yields the combined
signal vector y,, , € CK*1,

Ynt = (Ix @ b,) (4)
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where I'x denotes a K x K identity matrix and the received
signal vector y; is given by,

T N ~
Yy = |:ytl’Tayt27T7 e 7y151(7T:| = Zn:l ann,t + V¢, (5)

channel G, £

CKEMx@ and the noise

with  the matrix

equivalent
~ ~ - T
[G}{Tﬂg{T’ .. 7G§7T} c

T
vector v; £ [vtl’T, vf’T, e ,vtK’T} . We define
Bn,l £ (IK ® bn)H él S CKXQ. (6)

Then, y,,; can be rewritten as,

Yn,t = Bn,nwmt + ZZEN\” Bn,lxl,t + (IK & bn)H V.
(N

The first term on the right-hand side of (7) is the desired signal
for cluster n, the second is the sum signal of the inter-cluster
interferences, and the last is the noise term.

B. Problem Formulation

As stated in Section I-A, we consider the second grant-
free access type, i.e., the channel gains are a priori estimated
in the first stage [16-19]. We consider non-sparse spreading
signatures, like the Zadoff-Chu sequences. With the known
channel information and spreading signatures, one can obtain
the equivalent channel gain matrix G. In this paper, we aim
at developing an algorithm for optimising the beamforming
weight and signal estimate jointly at the BS.

Define the transmitted signal matrix for cluster n as X,, =
[®n,1,%n2, -, &n 7], With T denoting the number of slots
in one frame. According to (7), the least-squares (LS) error
function for MUD and DR is given by,

T
Eis (bna Xn) = Zt:l Hyn,t - Bn,nwn,tnga (8)

where (-); denotes the random realisation at time slot ¢, e.g.,
yn,t’ yf and wn,t~

To optimise the signal estimation, we need to constrain
the beamforming mainlobe towards the desired user cluster.
Thus, we introduce the constraint bgdn = 1 where a, £
1/Q ZqQ:l a, q is the average of the steering vectors of the
users in cluster n. Herein we use the steering vectors rather
than the original channel gain vectors to alleviate the impacts
of the random channel fading. The joint optimisation problem
can be formulated as,

arg b?;?ngLS (bn7 Xn) ) )
st |@nllo <5, bla, =1,
where 5 is the maximum user sparsity level. For a slow-fading

channel, a,, can be obtained by a,, = 1/Q Zqul gk /gk (1)
for any k.

III. BEAMFORMING SCHEMES

Eq. (9) describes a multivariate high-order nonlinear
constrained optimisation problem, which is generally non-
polynomial hard (NP-hard) to solve. In this paper, we consider
the joint alternating optimisation of the beamforming weight
and the signal estimate. To this end, we first design the
effective beamforming schemes for inter-cluster interference
suppression.

A. Statistical Beamforming Scheme

Ideally, the LS error in (8) can be converted into the mean
squared error (MSE) when three conditions satisfy, i.e., 1) the
number of slots (samples) is large enough, 2) the transmitted
signals follow stationary distributions and 3) the channel states
stay unchanged within a frame. Based on this, we substitute
Yn,¢ in (7) into (8) and give the MSE cost function,

H
Evise =D, Bl Bugwiill3 + Bl (I @ ba)" 3.

(10)

With the transmission power of the individual active user in
each cluster [ denoted as o7, user activity probability «; and
noise power 03, (10) can be simplified as,

H
EMsE = ZleN\n 02| B2 + 02| (Ix @ b,)" |13, (11)

With |B,,]I2 = bS5 GFGFPb,, we formulate the
beamforming optimisation problem as,

K -, -
i pH 2 k ck,H 2
arg min b, ( E I\ 0] E - GG + KO’vIM) b,,

s.t. blla, = 1. (12)

Eq. (12) describes a constrained quadratic convex optimisa-
tion problem, and the closed-form solution of it can be derived
for each cluster n, i.e.,

-1
(l %\ a2 Y F GEGRT —&-KU%IM) a,
pSBF _ ENAR

n —1

ELE Z 040'12 Zle éféfH +K0'12)IM a,
lEN\n

(13)

K o2 denotes the total noise power, involving the suppression
of the additive noise by beamforming. It also acts as a diagonal
loading factor to enable the matrix inversion in (13). Similarly,
oo} involves the suppression of the interference signals. In
fact, a tradeoff between the suppression of the noise and
interference depends on the relative value of the signal-to-
noise ratio (SNR) §; = 07 /o2 and q; of the interfering clusters
I € N\ n. Thus, we can select an empirical SNR (ESNR) §;
and a rough oy from (0, 1] without needing their exact values.
We refer to the solution (13) as the statistical beamforming
(SBF), which can effectively perform interference suppression
even with the number of the antenna elements far less than
the number of the users.

In practical mMTC scenarios, the small data sample per
user is insufficient to match the statistics in (12) by using
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the sample variance. In addition, the inaccurate ESNRs and
user activity probablities also influence the tradeoff between
the interference suppression and noise suppression to some
extent. Thus, it is better to use the LS cost function rather
than the MSE.

B. Dynamic Beamforming Scheme

We now develop the beamforming scheme based on the LS
criterion. In light of Egs. (3)-(6), the LS error function in (8)
can be further expanded as follows,

K T ~
Eus (bn) =0 S0 [blyf — bl Gh, 3.

Thus, the LS-based beamforming optimisation problem can be
further expressed as

K T
. H & kH
argmin &g (by, ) = b, E E 2, 18, bn,
b k=1 L—p=1 "t

s.t. bla, =1,

(14)

5)

where ¥, is the interference plus the noise component

(IpNO), defined as,

k A

i Lyl — Gha,,,. (16)

Similar to the SBF, the dynamic beamforming (DBF) solution
to (15) is derived, i.e.,

BREF = (Ry + elnr) " @/ (@l (Ro +ely) '@y
(17

where R, = 1/(KT) ZkK:I Zz;l Zlthsz? can be seen as
the auto-correlation matrix 3 of the IpNC, and e is a diagonal
loading factor.

The measurement signal y~ and the transmitted signal Tt
are not requisite for the SBF. The DBF does not require the
prior information of the equivalent channel matrices of the
users in the interfering clusters. The proposed SBF and DBF
can be readily applied to the existing receive beamforming
applications, especially for the receiver with a small number of
antennas. In particular, the DBF will degenerate to the classic
constrained LS-based beamforming method when considering
one desired user and one subcarrier only [40].

IV. THE INTEGRATION OF BEAMFORMING AND
COMPRESSED SENSING

The DBF algorithm requires x, ¢ as the prior knowledge,
forn = 1,2,--- ,N and t = 1,2,--- T, which however
are the signals to estimate. Thus, we now consider joint
optimisation of the signal estimation and beamforming.

In light of (5), the received signal over a frame can be
represented in matrix form by,

N ~
Y = Zn:1 G. X, +V e CKMXT (18)

3In fact, the matrix R, is a rough time-average approximation of the auto-
correlation matrix due to the small number of slots. Thus, we still refer to the
dynamic beamforming herein as a least-squares solution.

Combined
signal

Signal
estimate

Fig. 2: A general framework of the integration of SDMA and CS-
based grant-free NOMA

where the tth column vector of X, is «,, ; and the ¢th column
of V is v,;. Similarly, extending vy,, in (4) in one frame yields,

Y, = (Ix ®b,)'Y

=BnnXn+ Y BuXi+ Ik ®b,)" Ve T,
leN\n
(19)

To utilise the block sparsity, i.e., constant user activity in a
frame, (19) can be vectorised as,

M = Dc, + zn, (20)
where 1, = vec{Y,'}, D, = B,, ® Iy € CKTxQT
and ¢, = vec{X }. 2, is the IpNC under beamforming.
Therefore, the joint optimisation problem for any cluster n is
rewritten as,

- Dncn ||§7

arg min Ers (bn,cn) = ||nn 21

n;Cn

8.t ||2ntllo < 5, bI:dn =1.

For simplicity, we define ,, £ |9, — D,,c,||3 as the residual
energy in the following sections.

A. General Framework for the Joint Optimisation

As mentioned in Section I-A, the CS-based methods can
be employed for MUD, e.g., the CoSaMP [22] and SP [17,
23] *. Before going into the details, we first briefly introduce
the design principle of the joint optimisation system. For any
cluster n, with the known beamforming weight and the user
sparsity level, the sparse signal recovery problem (21) can
be readily solved by using the CS methods. Then, the signal
estimate is fed to the adaptive beamforming (ABF) module
for the beamforming weight update which gives rise to new
measurements for the CS module. A general framework for
the integration of SDMA and CS for uplink grant-free access
for any user cluster 7 is illustrated by Fig. 2. In this paper, we
consider the block-sparsity based adaptive SP (ASP) method
in the CS module.

4Other existing multiple user detection methods can also be extended and
applied to this framework.
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Algorithm 1 The adaptive subspace pursuit algorithm

Input: The measurement signal 7}, the parameter matrix ’bn, the initial
support set I"(1), the initial residual 75, (1) and the maximum iteration number
L.
Output: Signal estimation éj,
1).

1: Initial iteration index ¢ = 1,

2: repeat °

3 (Support estimation) A = I'(+) U F({||D,, [q, Tlrn (W2} a, s).
4: (LS estimation) w[A, T] = (Dn[A, T]) An. w[Q\ A, T] = 0.
5
6

2 active user set I'(t — 1) and residual 7, (L —

(Support pruning) I'(c + 1) = F({[lwlg, T][|3} 0, 5)-
(Signal estimation) é.,[I'(¢ + 1), 7] = (Dn[l(t + 1), T An,
€, [Q\I'(t+1),T]=0. X

7: (Residual update) rn (¢ + 1) = fl, — Dpél, e =1+ 1.

8: until ||y (¢)]|3 > [|Pa(c — D)3 or e — 1= L.

B. Algorithm Design for the Joint Adaptive Beamforming and
Subspace Pursuit

Based on the beamforming weight b,, which is initialised
by the SBF weight bSPF before the first iteration, the mea-
surements (combined signals) for the ASP are generated by,

Yn - (IK ® Bn)HYa

N 22
Nn = vec{Y,I'}. @2)

‘We also have,

Bn,n - (IK ® i)n)HGNna

o = 23)
D, = Bn,n ® Ir.

With the estimated active user set I'(¢+ 1) at the cth iteration,
the signal is estimated by,

é%[[‘(b"i_ 1)77-] = (ﬁn[[’(b"f' 1)7ﬂ>Tﬁn7
¢, [Q\T'(t+1),T] =0,

where Q is the set of user indices for any cluster. We herein
denote the vector &,[q, 7| as the gth 7 x 1 vector block of
&, and denote the matrix D,,[q, 7] as the matrix block of D,,
constitued by consecutive columns from index (¢ — 1)7 + 1
to index ¢7 . Furthermore, &, [A, 7] and D,,[A, T] denote the
sub-vector and sub-matrix by selecting their respective blocks
according to the indices from the set A. To sum up, the detailed
steps of the ASP algorithm are summarised in Algorithm 1.
The finding function F(V, () selects the indices of the first ¢
largest elements of an ordered set/vector V.

Subsequently, with the output X,, = [vec™!(é,,T)]* of
the ASP, the IpNC is estimated by,

Tk _
n,t

(24)

yr — Gh,,, (25)

with &,,, being the tth column of Xn The beamforming
weight is accordingly updated by,

. . -1 . -1
b, = (Rn + eIM> an/ <a§ (Rn + eIM) an> , (26)
with the estimation of the auto-correlation matrix R,,,

N K T sk chH
RTL - 1/(KT) Zk:l Zt:l ’I’n,t’l/n,t .

To sum up, a joint adaptive beamforming and subspace
pursuit algorithm (J-ABF-SP) is presented in Algorithm 2. We
now detail its main steps.

27)

Algorithm 2 The joint adaptive beamforming and subspace
pursuit algorithm: user detection

Input: The received signals Y, equivalent channel matrices Gy,, number of
the consecutive time slots 7, maximum user sparsity level 5, SBF weight
bﬁBF in (13), diagonal loading factor €, stopping factor 91, average steering
vector @, and the maximum iteration £ for user detection.

Output: Reconstructed sparse signal X, 1, active user set I, and residual
energy e, for each n € N

1: for each cluster n € N do

2: (Support initialization) Null initial support set I = .

3: (Measurement initialization) Compute 7, and D,, using bTSLBF via

(22) and (23).
4: for sparsity s = 1 to 5 do

5: (Measurement initialization) The iterative index z = 1, ln = 1
and D,, = D,,.
6: (Residual and support initialisation) 74(2) = 7n and [p(z) =
Is_q.
7: repeat
8: (Residual and support initialisation) r, (1) = 7(2), I'(1) =
[‘b(z)
9: Invoking the ASP algorithm.
10: (Parameter passing) z = z+ 1, ¢p(2) = é4 2, Tp(z) = I'(t—
1) and 74 (2) = rn(c — 1).
11: (Beamforming weight) X"A = [vec™!(cp(2), T)]T, compute
;Zﬁ,t by (25), and compute by, (z) by (26).
12: (Measurement update) Compute 7, and D, using l;n(z) via
(22) and (23).
13 until ey ()13 — Iro (2 — DI/ Iry(z — D3 < 01
14: (Sparsity update) cs = ¢p(2 — 1), €5 = ||rp(z — 1)||3 and I's =
Fb(z - 1)
15: (Range update) X, = [vec™Y(cs, T)] T, compute 4,5 by (41).
16: end for
17: (Candidate sparsity set) Sc = S\ {s € S : Yn,s > In}.
18: (Sparsity decision) s, = arg nelg1 Es,
S c

19: (Active user set) I, = Is,.

20: (Residual energy) e, = €5,

21:  (Signal recovery) X, 1 = [vec 1 (es,, T)]|T.
22: end for

Parallel computation: The iteration process (the steps
between 2 and 21) can be performed in parallel for all clusters
in V. This guarantees the fairness in terms of the access delay
for different user clusters and thus reduces the total latency in
comparison to the serial computation.

Parameter passing: Firstly, the outputs of ASP include
the support set (active user set) estimate, residual and signal
estimate (step 9) where the signal estimate is used for beam-
forming update (step 11). The updated beamforming weight
contributes to new measurements (step 12), which together
with the support set and residual are fed to the ASP (steps
8 and 9). When the stopping condition of the adaptive beam-
forming is satisfied (step 13), the signal estimates, residual
energy and support set estimate are saved (step 14), where
only the support set estimate is passed to the next iteration at a
new sparsity level (step 6). These parameter passing processes
enable the whole iteration to proceed.

Important initialisation: We initialise the beamforming
at each sparsity level with the proposed SBF weight (step
3). On the one hand, the SBF can sufficiently utilise the
channel information of both the desired user cluster and the
interfering user clusters without requiring the accurate SNR
values. On the other hand, the adaptive beamforming weight
on the current sparsity level can not be used for the iteration
at the next sparsity level, since the beamformer regards the
signals of undetected active users as interferences (steps 5 and
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12) when the given sparsity is smaller than the actual sparsity
level. This point will be further introduced in the Appendix B.
Accordingly, the residual at each sparsity level is initialised by
the measurement vector generated via the SBF weight (step
6).

Stopping condition: For the ASP (step 9), the stopping
condition is that the current residual energy (norm) is larger
than the previous one (step 8 in Algorithm 1), which indicates
the current and subsequent iterations tend to deteriorate the
user detection and signal recovery performance. For the beam-
forming update (step 13), we use a threshold for the evolution
of the residual energy as the stopping condition, decreasing
those unnecessary beamforming updates.

C. Error Analysis and Sparsity Level Decision

We now analyse the signal estimation error when using the
J-ABF-SP algorithm. The combined signal (20) for cluster n
can be expressed in sparse matrix form, i.e.,

Mn :Dn[Fn;ﬂcn[anﬂ"’_zn» (28)

where I, is the index set of the active users in cluster n
and z,, is the IpNC under beamforming. With the support set
estimate [, the non-zero transmitted signals are estimated via
(24), i.e.,

é"[F577-] = (Dn[Fsaﬂ)T(Dn[Fnaﬂcn[anﬂ + Zn)’
(29)

Considering that D,,[[s, T is with the full column rank, we
have

(Dulle, T = (Dol T D1, T1) (Dn[rsngg.)

Thus, we have (D, [, T]) D[, T] = I. We now analyse
the signal estimation error from three aspects, i.e., [s C I},
I's=1, and Is D I,

When I’y C I, (29) can be rewritten as

én[ls, T] = enlls, T) + (D[ Ls, T
: (Dn[Fn\FSaﬂcn[Fn \ F&ﬂ + zn). (31)

In this case, the signal estimates of detected active users
are contaminated by the received signals from the undetected
active users and the IpNC simultaneously. When I's = I,, the
transmitted signals are estimated by,

énlDn, T) = ul Do, T] + (Du[Dn, T)) 2.

It can be seen that (32) generates more accurate signal esti-
mates than those by (31) since the former is impacted solely
by the IpNC. Furthermore, the missed active users caused by
I's C I, also lead to the information loss.

When I’y D I3, (29) can be rewritten as

e, T) = [Dulln, T] Dn[FS\FnJ—”T
! (Dn[Fn’ﬂcn[Fn,ﬂ+Zn),

(32)

(33)

Note that [Dy[I},, 7] Dy[ls\ I}, T]] is assumed to have
full column rank. According to Appendix A, the M-P inverse
of the complex-valued block matrix can be computed by,

Dulr 7] Dulr\ 1, 7] = [P T

(34)
where

F = (Dn[Fnaﬂ)TDn[Fs \FmT]WHv W = U(UHU)ila
(35)

and
U=D,[[s\I},T]
Based on the property FED,, [, T] = WHD, [I},,T] =0,
we have from (33),
én[Fnaﬂ = Cn[Fnaﬂ + ((’Dn[Fnaﬂ)T - F)zna
Cnlls\ T, T) = Whz,.

(36)

(37
(38)

It can be seen that the signal estimates of the active
users &,[[,, 7] suffer from the additive IpNC weighted by
(D, [, T]) — F) while the signal estimates for the falsely
detected inactive users are constituted by the I[pNC weighted
by W, Substituting F in (35) into (37) yields,

én[Fnaﬂ = cn[an,T] + (Dn[rnaﬂ)T

(I =Dp[[s\ Ly, TIWHz,, (39)

where D,,[Is \ I}, T|WH has unit non-zero eigenvalues as
WHD, [, \ I,,7] = I. Thus, (39) may generate more
accurate signal estimates than those by (32) since the former
bears relatively small effects of the IpNC. However, I's D I,
results in the false alarm inevitably.

For simplicity, we have considered the same beamforming
weight for the above three different support sets, indicating the
same IpNC under beamforming. In fact, in Appendix B, the
beamforming weight varies in different sparsity levels, leading
to different [pNCs under beamforming.

We now study the decision method for the user sparsity
level, i.e., the number of active users. Obviously, the accurate
support set estimate [ satisfies [y, = I3, with s equal to
the real sparsity level s,. Therefore, we need to distinguish
s, from the other sparsity levels s according to the above
signal estimation ¢,,. Define the temporal power ratio of the
transmitted signals as,

& MAXger, ||‘Bn7q||%
minger, [|[€n,ql3°

n (40)
where x,, 4, the transmitted signal vector of the user u, 4 in
one sampling duration, is the transpose of the gth row of the
transmitted signal matrix X ,,. Similarly, the temporal power
ratio of the estimated transmitted signals &, , with given
sparsity level s is defined as,

N a MaXger, i'n,q”%

Yrs = —— 15 (41)

minqgrs H-’IA}n,q ”g 7
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where &, , = €,[q, T] is a block vector of the above signal
estimate é,[Is, T].

A method with two steps is proposed for determining the
user sparsity level.
1) The candidate sparsity set S. = S\ {s € S : Yn.s > n}
with § = {1,2,--- ,5}.
2) The sparsity is given by s, = arg min €.

We analyse the feasibility of this metfo% in the following.

The temporal power ratio in a given sampling duration
(usually a frame) is generally smaller than a threshold. In
fact, with the sampling duration 7 large enough, the temporal
power of the transmitted signal can be regarded as the estimate
of the actual transmission power. In this case, -,, will converge
to 1 when considering the same transmission power for the
active users in the same cluster 3. As analysed in (31), (32)
and (39), the signal estimates of the detected active users are
impacted by the IpNC, and even adversely impacted by the
undetected active users. In contrast, the temporal power ratio
is a relative value and suffers from smaller effects. Further
taking into consideration the randomness caused by a small
amount of samples, we can empirically select a value larger
than 1 as the threshold +,,. As analysed in (38), if the inactive
users are erroneously deemed active, their signal estimates
are constituted by the IpNC which is significantly suppressed
by beamforming, leading to 4, s > “,. Thus, step 1) is
used to remove the sparsity levels under which the falsely
detected inactive users very likely exist. Step 2) is to seek the
real sparsity level based on the fact that the residual energy
decreases with the sparsity level s increasing towards the real
one. This verification is given in Appendix B.

D. Interference Cancellation

As analysed earlier, the transmitted signal is estimated by
(24) via the measurements generated by beamforming for the
received signal in (22). However, the IpNC suppression solely
relying on beamforming may be limited, especially with a
small number of antennas at the BS. We now propose an
interference cancellation (IC) scheme to further improve the
signal estimation based on the active user set and the initial
signal estimates from the J-ABF-SP algorithm.

With the active user set and initial signal estimates from the
J-ABF-SP algorithm, we can reconstruct the received signal
from each cluster n as éan,L, where X, 41 is the signal
estimate after the «th IC. Then, we can obtain the IC-enabling
received signal for cluster n, i.e.,

Yo=Y -Y, (42)

where er = Zf\il I CF;’ZXZVL is the interference signal for
cluster n. Then, the new measurements are generated by,

’f’n = VeC{}A/;;F}, (43)

where b, is computed by (26) based on the signal estimate

X,,, which is initialised by X, ; before the first IC. In

SWhen considering different transmission power for the active users in the
same cluster, the range will converge to the maximum transmission power
ratio between the active users.

Algorithm 3 The interference cancellation enhanced signal
recovery

Input: The received signals Y, equivalent channel matrices Gy,, number of
the consecutive time slots 7, diagonal loading factor €, average steering vector
an, maximum number of iterations Lo and L3, active user set I, initial
error ep and initial signal estiamtion X, 1.
Output: Reconstructed sparse signal X,

1: (Weight initialisation) For each cluster n, X'n = Xn,1, %fm = yf —

C:"flzinﬁt, compute l;n by (26).

2: (Error initialisation) For each cluster n, €1, = en.

3: for Iteration 12 = 1 to Lo do

4: for Cluster n = 1 to N do

5: (Interference reconstruction) construct the received interference
signal Yyi = 3000 12, Gi X0y

6: (Interference cancellation) YV, =Y — Y,f.

7: for Iteration t3 = 1 to L3 do R R

8: (Measurement update) Compute 7j,, and D, using b, via (43)

and (23). .

9: (Signal estimation) &, [I'n] = (Dn[I0])1n. én[Q\T0n] = 0.
10: (Residual update) &,,11,n = ||in — Dnénll3.

11: if €,5141,n < €,3,n and t3 < L3 then

12: (Beamforming weight) X,, = [vec™1(én, T)]T. %ﬁ,t =

yf — éﬁaﬁn,t, and compute l;n by (26).

13: else

14: (Residual modification) €1 5, = €,5,n.

15: break the inner loop.

16: end if

17: end for R

18: (Signal update) X, ,54+1 = Xn.

19: end for
20: end for

21: (Signal recovery) Xy = X, £,41-

addition, the parameter matrix D, is computed by (23). Based
on the measurements (43), the new signal estimates can be
computed by using (24).

The detailed steps are summarised in Algorithm 3, which
mainly consists of three loops. The first loop gives the number
Lo for performing the IC which is generally small since the
performance enhancement by the IC in (42) typically reaches
its peak quickly. The steps in the second loop can be performed
in parallel for all clusters. This parallel computation property,
similar to Algorithm 2, ensures fairness among different user
clusters in terms of access delay and computational resources.
The third loop is used to iterate the signal estimation and
beamforming based on the constructed interference-cancelled
received signal. Similar to the ASP algorithm, the stopping
condition for the third loop is that the current residual energy
is larger than the previous one. The residual energy, signal
estimate, and beamforming weight from the third loop will be
conveyed to the first loop as initial values. The algorithms
2 and 3 are referred to as the IC-enhanced joint adaptive
beamforming and subspace pursuit algorithm (J-ABF-SP-IC).

V. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we compare the computational complexity of
the proposed algorithms with benchmark methods, including
CVA-BSASP [17], TA-BSASP [17], CREBCD [18], OAMP-
MMV-SSL [19], and OAMP-MMV-ASL [19] methods. The
complexity is measured by the number of complex-valued
multiplications needed over the whole algorithm implemen-
tation.
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TABLE I: The number of complex-valued multiplications

Algorithm Number of the complex multiplications
13 25
OAMP-MMV-SSL L1(3Q +1)TK + (ZP + Z)TQ)

OAMP-MMV-ASL | £1((3Q + 1)TK + (175’19 + %)TQ +372Q)

2TKQ+K(Q—-T)+2Q

CR-EBCD + i (3QY — TK + (K +2)QP) + 2Q.
1~ £)QUKCT +1) + TRKS2 + 53)

TA-BSASP iojl Csp

CVA-BSASP f; (Csp(Kev) + KevQT? + KovT)

J-ABF-SP = Cmup

J-ABE-SP-IC Cmup + Cic

We now analyse the computational complexity of our pro-
posed algorithms for one cluster since the algorithms can be
performed in parallel for all clusters. Given the number of
alternating iterations £;, the computational complexity of the
J-ABF-SP algorithm is given by,

5 5
Cmup = Cspr + MK(Q +T) + Ly Zs:l Csp +

Lp5(5 — 1)

+ — s

where Cspr = M3 + (N — 1)KQ + 1)M? + M is the

complexity for the SBF, Csp = £1(2Ks*T3 + 2(KQ +

Ks)T? + (2Q + K)T) is the complexity for the ASP in

Algorithm 1 and Cgp = M3 + (KT + 1)M? + (Q + 1)M

denotes the complexity for beamforming update. Given the

real user sparsity level s,, the complexity for the IC-enhanced
method in Algorithm 3 is,

CIC = (£2£3 + 1)CBF + £2(N - I)MTKQ + L2£3

(K2T3 4 (5o + Q)KT* + MK(Q+T) + TK).
(45)

Therefore, the total computational complexity of the J-ABF-
SP-IC is Cyiup + Crc.

The number of complex-valued multiplications for various
algorithms is listed in Table I. For ease of analysis, we assume
the same maximum number of iterations for all methods, i.e.,
Ly. For the OAMP-MMV-SSL and OAMP-MMV-ASL, the
letter P denotes the dimension of the signal constellation,
e.g., P = 2 for binary phase shift keying (BPSK). For the
CR-EBCD, £; < £; and QY < Q, < Q. For the CVA-
BSASP, Csp(Kcyv) is obtained by replacing K in Cgp to
K — K¢v, with K¢y denoting the number of samples for the
cross-validation.

For the OAMP-MMV-SSL. and OAMP-MMV-ASL, the
complexity is O(L1KTQ). The complexity for the CR-
EBCD also belongs to O(L1KTQ) since £; < L; and

2 < Q. < Q. The complexity of the TA-BSASP is
O(L1KT3s3). Similarly, the complexity of the CVA-BSASP
is O(L1(K—Kcy)T33%). As for the J-ABF-SP algorithm, the
complexity is Cyiup = O(Ly L1 KT353) since the number of
antennas M needed for beamforming can be far smaller than
the number of users @. In addition, the complexity of the IC is
Cic = O(L2L3KT3s2). Due to Cic < Cyup, the complexity
of the J-ABF-SP-IC algorithm is given by O(LyL; KT?>5%).

2
(Cer + MK(Q+T)+TK). (44)

We sort the computational complexities in an ascending
order, ie., OAMP-MMV-SSL=0OAMP-MMV-ASL=CR-
EBCD<TA-BSASP<CVA-BSASP<J-ABF-SP=J-ABF-SP-
IC. For the proposed algorithms, the increased complexity due
to beamforming is small in comparison to the CVA-BSASP
and TA-BSASP algorithms since the number of beamforming
update L, is usually small. However, the complexity is
comparatively large in comparison to the OAMP-MMV-SSL,
OAMP-MMV-ASL and CR-EBCD method because these
three methods employ the complexity reduction schemes
while the proposed algorithms still exploit the block-sparsity-
based SP algorithm for the MUD. In the future work, the
complexity of integrating the SDMA and grant-free access
is expected to be reduced by using specially designed MUD
schemes.

VI. SIMULATION RESULTS

We now assess the MUD and DR performance of the
proposed J-ABF-SP algorithms through simulations. A BS

(s-1) T with M antenna elements is considered, serving massive users

simultaneously. The users are assumed to be grouped based on
the channel correlation into NV < M clusters with @) users in
each cluster n,n = 1,2,---, N. Assume the AoAs of the
users in each cluster are randomly distributed over an angle
range with a width of 5 degrees ®. Without loss of generality,
we consider N = 3 and @ = 40, with the central angles of
the three clusters being -30, -10 and 10 degrees, respectively.
All users employ the common K = 20 subcarriers with the
same spreading signatures utilised in all the N clusters. In
this case, the frequency-domain system overloading factor is
NQ@/K = 600%, which increases linearly with the number
of user clusters. We consider the user activity rate to be
o, = 10%, i.e., the number of active users s, = 4 in each
cluster, which is far less than the number of the total users.
Each frame consists of 7 = 7 continuous symbol durations,
following the LTE-Advanced standard [41].

A. Beamforming Methods

We first verify the performance of the proposed SBF and
DBF schemes by assuming the a priori known transmitted
signals of the desired cluster and the known equivalent chan-
nel gain matrices for all clusters. For any cluster n, the
normalised mean squared error (NMSE) is defined as the

metric, i.e., £ (by, X,,) £ ELs (b, X5,)

K T ~ ’
, D1 Dty 1N G 413
the numerator is the cost function &eﬁned in (8) and the

denominator is the total energy of the desired received signal
under beamforming over one frame and over all subcarriers.
The result is obtained by averaging over 10000 independent
experiments. We compare our proposed beamforming schemes
with the conjugate beamforming (CBF) and the zero-forcing
beamforming (ZFBF) schemes [42].

Without loss of generality, we consider the same transmis-
sion power for all users and M = 4 antennas at the BS.
We assume known o, and unknown SNRs since the SBF

where

5The width of angle range of the clustered users should be generally smaller
than the 3 dB beamwidth.
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Fig. 3: The NMSE under different beamforming methods

performance is only relavant to their relative values. Taking
cluster 1 as the example, Fig. 3 shows the NMSE of it
with respect to the SNR by utilising different beamforming
methods. One can see that the proposed SBF and DBF present
much lower NMSEs than those of the CBF and ZFBF schemes.
Additionally, we evaluate the effects of different ESNR values
on the NMSE performance of the SBF scheme, by setting the
ESNR values to 0 dB, 5 dB, 10 dB, and 15 dB, respectively.
The results indicate that the SBF can tolerate a relatively large
inaccuracy of the ESNR.

B. Multiple User Detection and Data Recovery Methods

We now evaluate the performance of the proposed J-ABF-
SP and J-ABF-SP-IC methods for the MUD and DR, in
comparison with some benchmark methods, including the
CoSaMP [22], SP [23], CVA-BSASP [17], Oracle-BSASP
[17], Oracle-CREBCD [18], OAMP-MMV-SSL [19] and the
OAMP-MMV-ASL [19] methods. In particular, the CoSaMP,
SP and the Oracle methods are evaluated with known user
sparsity levels. Without loss of generality, we consider the
transmitted symbols randomly generated from 16QAM con-
stellation for all the users. For the benchmark algorithms, we
consider the single-antenna (e.g., the first antenna) reception
of any one user cluster as the received signal. For the proposed
algorithms, we select §,, = 3 as the sparsity decision threshold
for each cluster n.

We consider the detection error rate (DER) and the symbol
error rate (SER) as performance metrics. For any cluster n,
the DER is defined as pq,, = (fn, + m,)/Q where f,, and
m,, denote the number of falsely detected inactive users and
the number of missed active users, respectively. The SER is
defined as ps,, = Pan + Sen/(QT) where S., denotes
the number of error symbols of detected active users. Both
the DER and SER are calculated over a large number of
independent trials. In the following, we consider the same
input SNR §,, for each user cluster n € A/ and present the
average values of the DERs or SERs of the N clusters, unless
noted otherwise. The ESNR = 13 dB for the SBF and the
number of antennas M = 5, unless specified otherwise.

Fig. 4 shows the DERs regarding the input SNRs for
different MUD methods. The proposed J-ABF-SP algorithm

-10 T T T T
,20H‘é§é§é§gi
-300

40
50 F

DER (dB)

-60 F

70 [ —%—CoSaMP —>— OAMP-MMV-SSL i
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Fig. 4: The DER with respect to SNR
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Fig. 5: The SER with respect to SNR

performs better in user detection than the Oracle-BSASP
algorithm even though the latter knows the user sparsity level
a priori. This is because both the SBF and ABF used in the
J-ABF-SP can suppress the IpNC contained in the received
signal, leading to a higher receiver signal-to-interference-plus-
noise ratio (SINR) than that of the Oracle-BSASP. We also
observe that the J-ABF-SP algorithm can achieve extremely
low DERs even at low SNRs, e.g., -60 dB DER under the 1
dB SNR. In this regard, it does not matter that the J-ABF-SP
presents a slightly higher DER than that of the OAMP-MMV
algorithms as the SNR increases to a certain value, e.g., 4 dB.
Additionally, the results show that the J-ABF-SP can achieve
a more than 25 dB gain in DER performance in comparison
with the other benchmark algorithms.

Fig. 5 plots the SERs regarding the input SNRs for dif-
ferent MUD methods. It shows that the proposed J-ABF-SP
algorithm presents a more than 8 dB gain in SER performance
in comparison to the OAMP-MMYV algorithms when the SNR
is higher than 0 dB and performs even much better than the
other benchmark algorithms. In addition, the J-ABF-SP-IC
algorithm outperforms the J-ABF-SP due to the IC improving
the SINR at the receiver.

Figs. 6 and 7 illustrate the DERs and the SERs with respect
to the number of slots. We consider SNR=2 dB for each cluster
with other conditions unchanged. The CoSaMP and SP algo-
rithms perform the MUD and DR by slot, so their performance
remains nearly unchanged with the number of slots. With only
one slot, the Oracle-BSASP algorithm degenerates into the SP
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Fig. 6: The DER regarding the number of slots
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Fig. 7: The SER regarding the number of slots

algorithm, resulting in the same DER and SER performance.
The proposed algorithms achieve significantly low DERs and
SERs compared to the benchmark algorithms, even with only
one slot in a frame. Moreover, the performance enhancement
by the proposed algorithms tends to increase with the number
of slots and eventually converges. In particular, compared with
the OAMP-MMYV algorithms, the J-ABF-SP algorithm shows
slightly inferior DER performance when the number of slots
increases to 9, but demonstrates remarkable superiority in SER
performance.

We now study the impact of the number of antennas M
on the performance of the proposed algorithms. We consider
SNR=2 dB for every cluster and 7 slots in a frame, with other
conditions unchanged. Figs. 8 and 9 illustrate the DER and
SER of each cluster with respect to the number of antennas,
respectively. The DERs of all clusters gradually decrease with
the number of antennas. Specifically, the DER of cluster
2 is initially higher than those of the other two clusters
with a small number of antennas, but approaches a similar
value with the increased number of antennas. This is because
cluster 2 is located spatially between the other two clusters
and thus suffers from larger interferences, but this impact is
mitigated with the enhanced beamforming gain and spatial
resolution provided by the increased number of antennas.
Similarly, more antennas result in better SERs and smaller
SER differences among different clusters. In addition, J-ABF-
SP-IC outperforms J-ABF-SP in SER performance. Moreover,
the SER performance is enhanced by more than 20 dB by

-10 T
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20 J-ABF-SP, cluster 2| |
—8—J-ABF-SP, cluster 3
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Fig. 8: The DER regarding the number of antennas
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Fig. 9: The SER regarding the number of antennas

increasing the number of antennas from 4 to 6, indicating a
promising prospect for the integration of SDMA and CS for
uplink grant-free communication.

We now study the importance of the dynamic update of
beamforming weights for the MUD and DR performance. We
consider the BS with M = 4 antennas and the SNR to be 5
dB for each user cluster. We compare the ZFBF-ASP, SBF-
ASP, ZFBF-ASP-IC, and SBF-ASP-IC methods, which are
obtained by selecting initial beamforming (ZFBF or SBF) and
ignoring the beamforming and measurement updates in each
iteration in both J-ABF-SP and J-ABF-SP-IC. In particular, for
the SBF-ASP and SBF-ASP-IC, two ESNRs are considered,
i.e., 13 dB or 20 dB. We also consider the case with different
SNRs in different clusters, e.g., SNR=2,5,3 in dB for the
corresponding clusters with indices 1,2, 3, with their ESNRs
being 13 dB.

Fig. 10 shows that the SBF-ASP achieves a similar DER
with the J-ABF-SP at ESNR=13 dB, but degraded performance
at ESNR=20 dB. On the contrary, the J-ABF-SP performs
similarly under both ESNRs, indicating the importance of
dynamic beamforming updates when the SNR is unknown a
priori. In addition, when compared to the scenario with the
same SNR (5 dB) in all clusters (red line), cluster 2 has a lower
DER while the other two clusters have higher DERs in the
scenario with different SNRs in different clusters (blue line).
For cluster 2, the inter-cluster interferences are weakened since
the other two clusters have lower SNRs. For clusters 1 and 3,
the lower SNRs result in their higher DERs, which, however,
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are still better than those of the SBF-ASP with SNR=5 dB
and ESNR=20 dB (black line).

Fig. 11 illustrates that the IC can enhance the SER per-
formance of all the methods. Similar to the DER results, the
SBF-ASP can achieve a similar SER with the J-ABF-SP at
ESNR=13 dB, but degraded performance at ESNR=20 dB,
while the J-ABF-SP is insensitive to the selected ESNRs.
Moreover, compared to the scenario with the same SNR in all
clusters (red line), lower SER for cluster 2 and higher SERs
for the other two clusters are observed in the scenario with
different SNRs in different clusters (blue line).

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a general framework for the
integration of the SDMA with the CS-based grant-free NOMA
for the mMTC with a multiple-antenna BS. Two beamforming
schemes were proposed for the realisation of SDMA. In partic-
ular, we developed a joint adaptive beamforming and subspace
pursuit algorithm for the user detection and data recovery,
with a novel user sparsity decision method without knowing
the noise level. We also devised an interference cancellation
scheme to further enhance the data recovery performance.

In the future, we will study the amalgamation of the
SDMA and CS for the dynamic user sparsity-based grant-
free NOMA. To reduce the complexity, we will also study the
computationally efficient CS method for the user detection and
data recovery.

APPENDIX A
THE MOORE-PENROSE INVERSE OF A BLOCK MATRIX
WITH A FULL COLUMN RANK

We now present a method for solving the M-P inverse of
a block matrix with a full column rank. We first consider a
complex-valued block matrix with a full column rank, i.e.,
C = [A B] where both A € CM*" and B € CM*4 are
1tl¥ full ]olumn ranks. Define the M-P inverse of C as CT =

Wi |» Where F € C"*M and W € CM*4 are matrices

to be determined by using the known A and B. According to
CTC = I, we have

FA=0, (46)
(A" —F)B =0, (47)
whiAa=o, (48)
wiB=1. (49)

We define F = GW! with any matrix G € C"*9. In this
case, (48) leads to (46). Then, according to (47) and (49), we
have G = A'B and thus F = ATBWH,

Subsequently, we need to solve W from (48) and (49).
From (48), we can find a matrix U = (D + B) — AAT(D +
B) € CM*4 satistying UM A = 0 where D is any matrix
with matching dimensions and we have used (AAT)H = A Af
and AATA = A. We define W = UJ with unknown J.
According to (49), we have,

JIURB =1= J"UYN U - D+ AAT(D + B))
(50)
We can easily find D = d J = (UMU)™! are the
solutions. Thus, we have W = U(UYU)™! with U =
B - AA'B.
APPENDIX B

THE MONOTONOUS DESCREASING OF THE RESIDUAL
ENERGY REGARDING THE SPARSITY LEVEL

We now verify the monotonous descreasing of the residual
energy with the sparsity level increasing up to the real one.
With the stopping condition for beamforming update reached,
the residual energy for the sparsity s can be derived in light
of (15), (25)-(27),

K T
- Hk H
= Zkzl Zt . bk inilb, = KTbER,b,, (51)
where the estimated IpNC by (25) can be rewritten as,
Uy = g+ Gln, (52)

with the actual IpNC iﬁyt defined in (16) and &, = ®p ¢ —
&+ Note that =, ; is the transmitted signal of the users in
cluster n at slot .

With s < s, the signal estimate &,, ; by (32) is inaccurate
due to the undetected active users and the IpNC. It can
be divided into three parts at any ¢, i.e., &, [[s,1] # O,
Zna[ln \ Is,1] = 0, and &,,[Q \ (I, U Is),1] = 0.
Then, we have the estimation error &, ;, i.e., &[5, 1] =
xn,t[Fsa 1]—@71,15[1—‘37 1] Ii’n t[F \Fsy 1] =Ty t[ n\Fsa 1] and
&,1[Q\([},UI), 1] = 0. Thus, the IpNC estimate ¢}, , in (52)

=1 = JUUiU -
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contains the residual signal component of the detected active
users, the signal component of the undetected active users and
the real IpNC. The suppression on the signal component of

undetected active users in iffht is much smaller than that on

the IpNC due to the beam constraint bf@, = 1. Thus, the
residual energy €, in (51) with s < s, mainly consists of the
signal component of undetected active users followed by the
suppressed IpNC.

As s increases, the number of the undetected active users
decreases. In this case, the signal component of the undetected
active users in the estimated IpNC is weakened. Moreover,
the suppression for the real IpNC by beamforming can be
enhanced. Therefore, the residual energy e, will gradually
decrease with the given sparsity s increasing up to the real
one s,.
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