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Abstract—To enable the electrification and decarbonization
of transportation systems, it is important to understand how
technologies such as grid storage, solar photovoltaic systems,
and control strategies can aid the deployment of electric vehicle
charging at scale. In this work, we present EV-Ecosim, a co-
simulation platform that couples electric vehicle charging, battery
dynamics, solar PV systems, grid transformers, and power
distribution systems, to study the design and impacts of EV
fast-charging stations. This python-based platform leverages an
optional Model Predictive Control scheme with multi-fidelity
capabilities for various sub-components, to simulate realistic
scenarios. We demonstrate the utility of EV-Ecosim via a case-
study, focused on economic evaluation of battery size to reduce
electricity costs while considering impacts of fast charging on the
power distribution grid. We present qualitative and quantitative
evaluations on the battery size and develop scenario-based tables.
These tables delineate the trade-offs between candidate solutions,
providing comprehensive insights for decision-making under
uncertainty.

Index Terms—battery storage, control, fast charging, mod-
elling, optimization, simulation

I. INTRODUCTION

THE interactions between transportation, power systems,
and consumer habits is becoming more evident as the

race to decarbonize the transportation sector intensifies. Rapid
deployment of electric vehicles (EVs) is projected to continue
within the decade, approaching 20 million by 2030 [1]. A
major deterrent to EV adoption is range anxiety, which can
be alleviated by fast charging. The increasing deployment of
EV fast charging stations will have significant impacts on
power distribution systems by increasing voltage violations
and accelerating transformer aging [2]–[4]. To alleviate grid
impacts, many studies suggest Battery Energy Storage Systems
(BESS) as a technology to accelerate fast charging deploy-
ment. A fundamental challenge to fast charging at scale is
that objectives of various stakeholders involved in the EV
charging ecosystem may not always align. Thus, to accelerate
the deployment of fast-charging infrastructure, the entire EV
ecosystem should be considered. For example, utilities may
want to minimize voltage violations and defer distribution
circuit and power transformer upgrades, while EV charging
companies may want to maximize their station reliability and
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profit. Depending on who owns grid storage, maximizing its
operational value while minimizing its degradation may be
important. Since these objectives may not align, it is inherently
challenging to optimize for the interests of all stakeholders in
a mathematical formulation without making overtly simplified
approximations.

A. Co-optimization of Electric Vehicle Service Equipment and
Distributed Energy Resources

BESSs can reduce overall energy and environmental costs
because of their fast response to power signals, lack of running
fuel, and role in enabling the integration of other carbon-free
distributed energy resources (DERs) [5]. Because DERs such
as solar PV and BESS require significant capital costs, it is
important for an EV charging service provider (EVSP) to size
their DERs to be economical. If sized properly, BESSs can
be leveraged for energy arbitrage and frequency regulation,
which can reduce electricity bills and make revenue in the
electricity markets to pay back its cost over its lifetime [6]–
[8]. So naturally, there have been multiple research studies on
the optimization of DERs for planning and operations.

In many studies, authors propose formulations for optimal
sizing and operation of DERs for Electric Vehicle Supply
Equipment (EVSEs), which commonly include Mixed-integer
Linear Programs (MILPs). Authors in [9]–[11] propose MILPs
for optimally sizing storage for a fast charging station, with
the objective of minimizing overall station cost. In [7], the
authors investigate the optimal sizing for residential BESS
by using linear approximations to model major components,
specifically the BESS. A recurring theme in these works is
that they do not consider local distribution network effects and
they oversimplify key subsystem models. Oversimplification
of systems with nonlinear dynamics (e.g., BESS) with linear
approximations may yield unwanted costs and misleading
results. In [12], [13], the authors showed in an electricity
market study that higher fidelity models can provide greater
economic value over operational lifetimes.

B. Simulation of EVSE and DERs

Many optimization problems that study EV charging involve
some form of simulation, either at the component or system
level. Some models use Monte-Carlo sampling methods or sta-
tistical models to capture certain components of the problem.
Due to the paucity of EV charging data, studies use models
to generate EV charging load curves. Many include Gaussian
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Mixture Models (GMMs) [14], [15] which perform well on
an aggregate. Others have shown that deep learning (DL)
generative models can learn EV load profiles and generate
them with a high fidelity [16].

Co-simulation platforms provide the means to tie the in-
teractions between EV charging, DERs, and the grid, to study
EV impacts. One example of such a platform is HELICS [17],
a transmission-distribution market co-simulation framework.
Authors in [18] use HELICS to investigate the impacts of
EV charging at scale for the San Francisco (SF) Bay Area.
However, because major charging bottlenecks occur at the
distribution level [3], evaluating candidate EV station configu-
rations on local networks is critical for rapid decision-making
and deployment. Additionally, the heterogeneity of distribution
circuits make them critical to understanding the impact of EV
charging on local community grid resilience and equity [19].

C. EV-ecosim

EV charging station design optimization with DERs is non-
trivial because it must consider lifetime operation. As opposed
to solving a simplified joint optimization problem for opera-
tions and system component sizing, we take a scenario-based
simulation approach. This can help reduce oversimplification
of non-linear systems, like batteries. To do this, we build EV-
ecosim, a python-based multi-fidelity co-simulation environ-
ment that couples EV charging, battery system identification
and degradation, power systems, and customized controls, to
value pathways for scaling EV fast-charging using DERs. With
EV-ecosim’s framework, an EV charging provider can set up
scenarios and configurations for solar, battery, and transformer
sizes under different optimization objectives and calculate the
expected costs/revenue and grid impact of different objectives
at varying EVSE utilization levels.

The main contributions from this paper are as follows:
1) We introduce EV-ecosim, a co-simulation platform that

couples EV charging with the power distribution net-
work, transformer dynamics and aging, calibrated bat-
tery storage dynamics and aging, solar PV, and post-
simulation cost estimates.

2) We include a battery system identification module with
open-circuit voltage correction scheme, which signifi-
cantly improves the equivalent circuit battery model.

3) We demonstrate the value of EV-ecosim via a use
case for sizing collocated battery and solar for an EV
charging station, while considering effects on the local
power distribution network and economic viability.

The rest of the paper is organized as follows. In Section II,
we describe the simulation framework, including components
that make up the system and state evolution. In Section III,
we describe a case-study that leverages EV-ecosim. In Section
IV we discuss the results and conclude in Section V.

II. SIMULATION FRAMEWORK

Fig. 1 describes the EV-ecosim framework. Every subsystem
is built as a module. We emulate physical systems using their
respective state models and their interactions are captured via
data exchange at each time step. The framework includes

a controller that receives feedback from simulated physical
systems. The charging simulation orchestrator initializes all
modules (within the dashed region) using their respective
configurations and populates all charging station modules at
specific nodes in the power network.

The optimization and controller modules exist separately
by design but work in unison. The controller loads the opti-
mization module, takes as input the load signal from the load
generator, and sets up the problem to be solved. Afterwards,
the controller takes the solutions from the optimization module
and sends control signals to the Solar and Battery modules. All
desired time series for the module states are saved during and
after simulation. The post-simulation cost module produces
estimates for system lifetime costs and grid impact. Pb,ev and
Ps,ev are the powers from the solar and battery system to the
EVSE, respectively. Ib is the current signal from the controller
to the battery. Ps,b is the power from solar to battery. Pgrid,b

is the power from the grid to the battery. Qcap is the battery’s
capacity. Ta, To, and Th are the ambient, transformer top-oil,
and transformer hot-spot temperatures, respectively. We now
discuss individual modules for the rest of this section.

A. Battery Dynamics

Batteries constitute a significant portion of the cost in
electrification projects, accounting for about 20-30% of the
overall cost of a passenger EV [20]. Using accurate models is
important to maximize the value of the system. Approaches
today include bucket, physics-based, and equivalent circuit
models.

1) Bucket Models (BM): These are the simplest and most
common battery models used in optimization studies
storage [7], [9]–[11], [21]. They do not model any
physics.

2) Physics-based models (PBM): PBMs are developed from
first principles. PBMs model the internal components of
the battery cell and range in complexity in the details
of the components they capture. Examples of physics-
based models include the single particle model (SPM),
pseudo-2D model (P2D).

3) Equivalent Circuit Model (ECM): Due to their com-
putational tractability, ECMs are often used in battery
management systems [22]. They are data-driven semi-
empirical models that use a circuit model to capture bat-
tery dynamics, rather than modeling the physics of the
battery’s internal components. A well-calibrated ECM
with the right context may outperform PBMs.

We elect ECMs due to their modest tradeoff between
computational complexity and accuracy. The ECM consists of
a single resistance Ro and two resistance-capacitor (RC) pairs;
see Fig. 2. A cell is modelled and scaled by combining the
cells in series and parallel to form a pack. Pack configurations
can be specified by the user by setting the desired voltage
and energy capacity. It is assumed the cells are maintained
at constant ambient conditions at 23°C, thus, internal thermal
dynamics are not explicitly modelled in this paper.
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Fig. 1. System diagram for simulation framework showing the various objects and flow of inputs/outputs.

Fig. 2. ECM circuit diagram

OCV (S̄(t)) is the open circuit voltage of the cell and a
function of the battery cell’s state of charge (SoC) S̄(t) at
time t. The voltage equation for the RC-circuit in Fig. 2 is:

V (t) = OCV (S̄(t))− I(t)Ro − IR1(t)R1 − IR2(t)R2, (1)

stating that the voltage across the terminals of the cell is
equivalent to the open circuit voltage minus the voltage drop
across the resistive components of the cell. The current flowing
through Ro is the current induced by the load to which the
battery is connected to, or the discharge or charge current of
the battery. The power extracted from a battery at time t is:

P (t) = V (t)I(t). (2)

The current flowing through Ro is I(t), the load current in
the cell. Each RC pair comprises a resistor and capacitor that
are connected in parallel, thus the sum of the current flowing
through the resistor and capacitor must be equal to the current
I(t) flowing into the connecting node:

I(t) = IR1(t) + C1
dVc1

dt
(3)

IR1(t) = I(t)−R1C1
dIR1

dt
(4)

dVc1/dt is the rate of voltage change across capacitor C1

and dIR1/dt is the rate of current change across resistor R1.
Equations (3) and (4) hold similarly for the 2nd RC pair R2-
C2, by simply replacing the indices. These relationships hold

if one desires to increase the order of the ECM by including
more parallel RC pairs. The battery state evolution is guided
by the following equation [23]:

IR1(t+∆t) = e−
∆t

R1C1 IR1(t) +
(
1− e−

∆t
R1C1

)
I(t) (5)

We next describe how experimental data can be used to
identify realistic estimates for Ro, ..., C2 which can then be
used in simulation. If an EV-ecosim user has experimental data
for the battery system they wish to simulate, this methodology
can be used to produce realistic parameter estimates.

B. Battery System Identification

The battery system identification module is important for ac-
curate representation of the battery dynamics. We demonstrate
the system identification module on data from 10 identical
cells, each subjected to Urban Dynamometer Driving Schedule
(UDDS) cycles, Hybrid Pulse Power Characterization (HPPC),
and Electrochemical Impedance Spectroscopy (EIS) diagnostic
tests [24]. The cells were tested at different charging rates,
ranging from C/4 to 3C, where 1C rate is equivalent to
discharging the entire battery cell capacity in 1 hour.

Because of the non-linearity of ECM model equations, we
use a Genetic Algorithm (GA) to learn the ECM parameters.
From the experimental data, we observed that the voltage drop
for a given current I(t) depended on its SoC, suggesting
some dependence (or correlation) of resistance with SoC.
Consequently, we modelled the resistance Ro as a function
of SoC with the relationship:

Ro(S̄(t)) = BRo
eS̄(t) +ARo

eCRo S̄(t) (6)

where ARo
, BRo

, and CRo
are parameters that are learned

by the GA. We feed the experimental data through our system
identification module and obtain a parameter vector Θ =
[R1, C1, R2, C2, ARo , BRo , CRo ]

T . In the GA, the objective
function is called the “fitness function”, which is defined as
the negative RMSE of the ECM times αfit:

J = −αfit

√√√√ n∑
i=1

1

n
(Vdata,i − V (Θ)i)

2 (7)
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Fig. 3. Plot showing OCV correction on model accuracy

where Vdata,i is the experimental voltage and V (Θ)i is the
voltage from the ECM model. n is the number of measured
data points. We introduce a hyperparameter, αfit, to increase
the fitness function’s variance over the search space, to en-
courage exploration; we choose αfit = 10 and find it works
well across all cells.

During fitting, there is an error on the predicted voltages
across all SoC, thus we hypothesized that the constant error
is induced by a bias in one of the measurements. As a result
of this, we introduce a novel open circuit voltage correction
(or OCV correction) scheme. OCV is typically measured by
loading the cell with a small DC signal, usually C/20, to
measure the voltage across its terminals. This is bound to
underestimate the OCV because: (1) the loading device and
circuit wires induce voltage drops because of their own internal
resistance, and (2) it is impossible to load the cell without a
voltage drop across its terminals. The steps for OCV correction
are as follows:

1) Use use the initially measured OCV to fit a 2nd order
ECM for the cell and save the learned parameters.

2) Using the ECM model with parameters learned from
step (1), simulate the voltage response to learn the
quadratic bias correction function (Equation (8)), which
is a function of the original measured OCV, to produce
a corrected OCV that eliminates the bias error.

OCV := a · (OCV )2 + b (8)

3) Finally, run step (1) again using the learned OCV
correction function to fit a new 2nd order ECM, which is
the final cell model. All OCVs used in the final battery
model are the corrected OCVs.

Once the learned cell parameters are passed into the bat-
tery module, the battery pack is built up into the desired
series-parallel configuration. We assume all cells are identical
and balanced. The battery pack is scaled up similarly as
done in [25], [26]. The impedance of a parallel RC pair is
R/(1 + jRCω), which can be rewritten as 1/(1/R + jCω).
For a group of n identical series impedances, the equivalent
impedance for the series connected RC pairs is 1/(1/nR +
jCω/n) , from which we infer an equivalent resistance and
capacitance, Req,s = nR and Ceq,s = C/n respectively.

Fig. 4. Battery pack ECM diagram

Fig. 5. Plots of experimental data of 3 NMC cells and aging model

Similarly, for a group of m identical parallel impedances,
the equivalent impedance is obtained using Ohm’s law as
1/(m/R + mjCω) , which yields an equivalent resistance
and capacitance, Req,p = R/m and Ceq,p = mC.

The derived pack ECM from an initial cell model is shown
in Fig. 4. n represents the number of cells in series and m is
the number of modules in parallel. OCVeq is the equivalent
OCV (OCVeq = n×OCV ).

C. Battery Aging
As displayed in Fig. 1, the battery aging module is distinct

from the battery module. This design choice allows one to
adopt and test multiple degradation models for different battery
types and chemistry. It also aids easy model re-calibration and
future model improvements. During each simulation time step,
the aging module updates the battery module’s state-of-health.

The aging model used in this paper is a semi-empirical
model described in [27]. The authors showed that their model
was able to extrapolate beyond the temperature conditions in
the training data. In [27], aging is captured by two modes:
calendar and cycle aging.

1) Calendar aging: The calendar aging of the battery
occurs continuously, even when at rest. It has been shown
to be temperature and voltage dependent. The temperature
dependance is captured by the Arrenhius relation:

αT (T ) = a1e
−EA
RT (9)

and the voltage dependence is represented as

αV (V ) = a1V + a2 (10)
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, where EA is the activation energy, R is the gas constant and
T is the thermodynamic temperature [27]. αV (V ) and αT (T )
are combined in [27] to obtain αcal(T, V ) and then the relation
in Equation 11 is used to calculated calendar aging. Parameters
a1 and a2 are from [27].

Qlost,cal = αcal(T, V )t0.75 (11)

αcal(T, V ) is a voltage and temperature dependent aging
factor.

2) Cycle aging: similar to calendar aging, cycle aging
factor βcap is learned from experimental data and depends
on the average discharge voltage and the change change in
discharge depth [27]. The cycle aging function comprises the
cycle aging factor βcap and the total charge throughput Q(t)
in amp-hours (Ah) at time t.

Qlost,cyc = βcap

√
Q (12)

The capacity update function obtained from equations (11) and
(12) is

Qcap(t+∆t) = Qcap(t)−Qlost,cal(t)−Qlost,cyc(t) (13)

Parameters for data-driven models are usually unique to a
specific cell, so parameters must be adjusted to fit a different
cell with the same chemistry. We scale the aging factors in
order to achieve a comparable per-cycle loss-of-life of the
cells in [24]. The aging plot is generated by using the same
experimental current profile on the battery module; see Fig.
5. Each cell is subjected to a charging protocol at a specified
C-rate and each diagnostic represents a capacity test after a
specific number of cycles [24].

D. Transformer thermal dynamics

One of the most popular models for transformer thermal
dynamics was introduced in [28], [29], and is based on a
2nd order lumped capacitance thermal model that defines the
temperature changes in the oil and hotspot because of iron loss
and the copper loss in the transformer. The thermal dynamics
equations are given by:

∂θo(t)

∂t
=

−1

τo
(θo(t)−θa(t))

1
n +

∆θ
1
n
or

τo

(
K(t)2R+ 1

R+ 1

)
(14)

∂θh(t)

∂t
=

−1

τh
(θh(t)− θa(t))

1
m +

∆θ
1
m

hr

τh
K(t)2 (15)

The thermal state is propagated at each time step using
the Euler method. θh is the hot spot temperature of the
transformer, θo is the top oil temperature, and θa is the ambient
temperature. τo is the top-oil time constant and τh is the
hotspot time constant. K(t) is the ratio the of current load on
the transformer at time t to the rated load of the transformer,
R is the ratio of the copper loss to the iron loss at the rated
load. ∆θor is the rated change in top-oil temperature (the
change in top oil temperature at the rated load) and ∆θhr is the
rated change in hot spot temperature. m and n are constants
based on the expected cooling mode of the transformer. The
recommended values are included in the IEEEC57-91-2011
guide for loading oil-immersed transformers [30].

E. Solar

The solar module does not explicitly model complex dy-
namics. It ingests configuration files that determine the system
capacity and location. Solar power output is calculated using
irradiance data from the NREL US solar irradiance database
[31]. The output of the solar module is given by:

Psolar(t) = min (Prated, Girr(t)Apanelηs(t)) (16)

where Prated is the rated capacity of the solar PV, Girr(t) is
the Global Horizontal Irradiance (GHI) at time t, Apanel is
the surface area of the panel and ηs(t) is the efficiency.

F. Charging station (EVSE)

The charging station (or EVSE) module produces a load
with a power factor parameter that determines its reactive load
contribution, if any. It also retains all information of all power
injection at its grid node/bus. It is initialized with its location,
capacity, and efficiency. The EVSE module ingests the battery,
solar and controller modules to which it is assigned. The power
equations for the charging station are

Pgrid = Pev
1

ηevse
(17)

Qgrid = Pev tan (arccos (pf)) (18)

with pf as the power factor, Pgrid and Qgrid are the real and
reactive loads, and ηevse is the efficiency.

G. Power system

EV-ecosim interfaces with GridLAB-D [32], an open-source
power systems modeling and simulation environment, to sim-
ulate the power distribution system. GridLAB-D is a simulator
for running three-phase unbalanced quasi-static timeseries
power flow calculations. The interface between EV-ecosim
allows simulation variables to be passed between the two
environments at each timestep in the simulation. At each
timestep, the real and reactive power injections are calculated
by EV-ecosim modules and sent to GridLAB-D before running
the power flow calculation. GridLAB-D solves the power flow
problem using a Newton-Raphson solver using the current
injection method [32]. Power flow solution values can then be
passed back to EV-ecosim, if they are used by the simulation
or controller. A variety of different distribution system feeder
models can be simulated in GridLAB-D, such as standard
IEEE test systems [33], synthetic taxonomy feeders [34], or
real-world feeder models. Such models are then populated with
time-varying load profiles and DER locations. The spot loads
from the original feeder models can be used to inform the
placement of resources and development of time-varying load
profiles.

H. Controller

The controller is a user-defined module that decides how
controllable DERs are leveraged. A user can specify the con-
troller to be of any form. It can be logic-based or optimization-
based, with any objective, given it produces the relevant
control variables at each time step. We allow this flexibility
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TABLE I
DESCRIPTION OF CONTROLLER OPTIMIZATION VARIABLES

Variable Description Sign
Isolar(t) Current from solar to battery (+)
Igrid(t) Current from grid to battery (+)
Imax Max allowable battery current (+)
Iev(t) Current from battery for EV charging (+)
I(t) Current flow in or out of battery (+)
P (t) Power flow in or out of battery (+, -)
Pev(t) Power from battery to EV (-)
S̄(t) Battery state of charge (+)
Sev(t) Power from solar to EV (+)
Lev(t) EV charging load (kW) (+)

because it can be useful for control design. In this paper,
we use an optimization based controller that solves a MILP.
However, the true states of the modules are evolved using the
higher fidelity models described in this paper. The unavoidable
asymmetry between controllers and real systems is a desirable
effect we wish to capture, as it closely mirrors reality.

The controller can work in either a Model Predictive Control
(MPC) fashion or as an open-loop optimization. In the MPC
mode, only the first computed action is taken before all the
states are updated. Then the next optimization problem is
solved at the next time step, with the current state becoming
the initial state for the next problem and the horizon shifted
forward one step. For the open-loop scheme, one optimization
problem is solved for the entire horizon. The open-loop
approach is computed offline while MPC is an online control
policy that can account for model and environment uncertainty.

a) Decision variables: The main decision variables are
I(t), Isolar(t), Iev(t), and Igrid(t) as described in Tab. I.

b) Optimization problem: For the case study discussed
Section III, the objective is to minimize the EVSE’s overall
electricity cost. The problem is described below as:

minimize
Isolar,Iev,I,Igrid

λelec (19)

subject to S̄(t = 0) = S̄initial (20)

S̄(t ̸= 0) = S̄(t−∆t) +
I(t)∆t

Q(t)
(21)

ysolar, ygrid, yev ∈ 0, 1 (22)
Isolar(t) ≤ Imaxysolar (23)
Igrid(t) ≤ Imaxygrid (24)
Iev(t) ≤ Imaxyev (25)
Iev, Isolar, Igrid ≥ 0 (26)
yev + ygrid ≤ 1 (27)
yev + ysolar ≤ 1 (28)
Pev(t) = −Iev(t)V (t−∆t) (29)
Pgrid(t) = Igrid(t)V (t−∆t) (30)
Psolar(t) = Isolar(t)V (t−∆t) (31)
P (t) = Pev(t) + Psolar(t) + Pgrid(t) (32)
Lev(t) + Pev(t)− Sev(t) ≥ 0 (33)

λelec will be properly defined in Section III below. The
controller constraints are defined w.r.t the battery and other

TABLE II
PARAMETERS FOR SOLAR LCOE ESTIMATION.

Parameter Value
Cell Technology Mono-Si

Package type Glass-polymer
System type Roof-mounted commercial scale

Location USA (CA)
Inverter loading ratio 1.3

resources. Many of these constraints are necessary to ensure
the controller is working within the space of physically real-
istic solutions. Equations (20)-(28) ensure the control actions
respect battery physics. Equations (20)-(21) define the SoC
evolution via coulomb counting. Equation (26) defines binary
variables ysolar, ygrid, and yev which control whether the
battery is charging from solar PV, the grid, or delivering
power to the EVSE, respectively. Equations (23)-(28) define
the currents flowing into and out of the battery and Equations
(27)-(28) ensure that the controller does not consider solutions
where the battery is discharging and charging at the same time.
Equations (29)-(32) define the total power injected into or
delivered by the battery and Equation (33) restricts the battery
from discharging to the grid.

III. CASE STUDY

We demonstrate the utility of EV-ecosim via a case study.
We size a battery for a site in California, USA, with a fixed 80
kW capacity solar PV installed and load profiles for the site.
Solar PV is allowed to net-meter at the TOU rate given to the
EVSE operator. We use the Levelized Cost of Energy (LCOE)
as a metric for comparing configurations across the different
scenarios. We assume a perfect forecast of the EV load and
insolation as we are solving a planning problem focused on
sizing a DER system for different utilization scenarios.

The levelized cost of electricity is the estimated revenue or
total net expenditure required to build and operate an energy
system over a specified cost recovery period [35]. In this text,
we use the more general phrase “levelized cost of energy,”
to fit the more common “levelized cost of electricity” and
“levelized cost of storage (LCOS)” under one umbrella. This is
done to conveniently ascribe a combined lifetime value to the
system (solar + battery) rather than each component separately.
The recovery period for this study is the expected operational
lifetime of the energy asset.

The levelized cost of energy or LCOE of a solar PV system
is equivalent to its levelized cost of electricity. We define
the LCOE for the battery system as the total lifetime net
expenditure per unit energy over its operational lifetime. For
the LCOE of solar calculation, we use the NREL Comparative
PV LCOE Calculator [36], which takes specified values to
produce LCOE estimates. Tab. II shows the set of parameters
used to calculate the LCOE for the solar system in this study.

The baseline LCOE for PV is $0.067/kWh. We used a fixed
capital cost of $345/kWh for the battery, from NREL [37]. We
obtain the LCOE for the battery with the following steps:

1) Select a fixed capital cost per energy capacity.
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2) Calculate the expected life of the battery post-
simulation. It is calculated from the amount of degrada-
tion/aging experienced over the simulation time frame:

Lexp =
0.2

Qlost
Nsim, (34)

where the end of life of the battery is when the battery
capacity Q(t) is at 80 percent of its nameplate capacity
Qcap. Qlost is the portion of the battery’s nominal
capacity that was lost during the period of simulation.
Nsim is the number of days simulated. Therefore Lexp

is the expected life of the battery (in days) if the aging
path continues as in the simulated days.

3) Calculate the expected energy throughput of the bat-
tery over its expected lifetime. This is obtained post-
simulation and described by the equation:

Eexp = EdailyLexp (35)

where Edaily is the average daily energy throughput.
4) Calculate the expected battery aging cost ($). In this

work, we assume all costs due to aging incurs a cost
proportional to the capital cost for capacity lost.

λaging = λcapital
Qlost

0.2

Lexp

Nsim
(36)

The equation above simplifies into the original capital
cost of the battery, implying that the expected aging
cost over its expected operational lifetime is equal to
the original capital cost, which is reasonable. λaging is
the aging cost and λcapital is the capital cost.

5) Calculate the total cost (normalized) over its expected
life, which is the levelized cost of energy. It is cost for
each unit of energy flowing through the battery during
its operational life ($/kWh):

λLCOE =
λaging + λcapital

Eexp
(37)

A. Scenarios and configuration
We investigate the impacts and economic value of different

BESS systems for a given set of scenarios. The scenario is
defined by the expected utilization level and environment. The
EVSE controller objective is to minimize the electricity cost.

In this case study, we consider two degrees of freedom:
the maximum allowable C-rate of the battery and its energy
capacity. Five C-rates (Csim = {0.1, 0.2, 0.5, 1.0, 2.0}) and
five capacities (Esim = {50, 100, 200, 400, 800}kWh) are
considered, for a total of 25 simulations per month.

The station level EV charging load profiles are generated
using the SPEECh model [15] at varying levels of EV pene-
tration (see Tab. III). The power a charging station can deliver
is capped by its predetermined capacity.

For the distribution network, we use the IEEE 123 bus
network [33]. Data from the Pecan Street database [38] was
used to populate time-varying residential building loads within
the power network. The magnitude of the residential load (e.g.
number of homes) at each node was sized relative to the
specified spot loads. The charging station transformers were
all sized at 75 kVA, for comparing the impacts of different
systems design on transformers.

TABLE III
SUMMARY LOAD CHARACTERISTICS FOR SIMULATED LOAD SCENARIO

No. EVs Peak load (kW) Average load (kW)
400 172 22
800 354 45

1600 424 91
3200 608 178

TABLE IV
JUNE LCOE (USD/KWH) WITH 0.1 C MAX CYCLE CONSTRAINT.

No. EVs Base 50 100 200 400 800
400 0.2573 -0.0508 -0.0491 -0.0488 -0.0486 -0.0406
800 0.2536 0.1396 0.1399 0.1402 0.1404 0.1442

1600 0.2461 0.2271 0.2172 0.2375 0.2388 0.1657
3200 0.2432 0.2639 0.2694 0.2695 0.2694 0.2229

B. Cost function

We use the PGE BEV2-S electricity bill for business EVSE
in the objective [39]. The rate structure includes a time-of-
use (TOU) rate and an additional subscription charge for
EVSE operators to purchase a maximum penalty-free average
power that can be consumed within a 15-minute interval. The
subscription charges are sold based on a block system. If a
customer exceeds their allowable maximum power for any
15-minute window within a month, the customer is charged
an overage fee (per kW) for each kW within the 15-minute
window with the maximum power subscription exceedance.
We express this electricity cost mathematically below.

λsub = γbpb (38)

λover = povermax
t

{Pgrid(t)− γblockPall}+∀t ∈ T (39)

λtou =

T∑
t=0

ptou(t)Pgrid(t) (40)

λelec = λtou + λover + λsub (41)

λsub is the subscription cost, γb is an integer decision
variable, which is the number of blocks to be purchased for
the month and pb is the price per block. λover is the overage
cost, pover is the overage fee, Pgrid is the net grid load from
the EVSE, and Pall is the power allocated per block. ptou is
the TOU price.

IV. RESULTS AND DISCUSSION

Tab. IV contains estimates for the LCOE (electricity +
battery) in dollars per kilowatt-hour ($/kWh) for June. In this
case study, the solar capacity was not varied, and thus is
fixed for all configurations in the cost comparison matrix. The

TABLE V
JANUARY LCOE (USD/KWH) WITH 0.1 C MAX CYCLE CONSTRAINT.

No. EVs Base 50 100 200 400 800
400 0.2573 0.2197 0.2198 0.2202 0.2269 0.2279
800 0.2536 0.2743 0.2744 0.2745 0.2777 0.2783
1600 0.2461 0.2827 0.2723 0.2929 0.2191 0.2198
3200 0.2432 0.3031 0.3032 0.3031 0.3031 0.2565
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baseline (no DER) is more expensive than the configurations
with DER in most cases, except at the 3200 EV load scenario
for which an 800 kWh battery capacity is needed to outperform
the baseline. For the 400 EV load scenario, all BESS configu-
rations outperform the base case. Due to low utilization in the
400 EV scenario, the system generates revenue by net metering
excess solar energy, yielding net profits. With 400 and 800
EVs simulated to generate load profiles, respectively, there is
no overall added benefit for the increased battery capacity, as
can be observed in Fig. 6. In the 400 EV (top) scenario in
Fig. 6, there is an increase in the system levelized cost (or
decrease in profit)—this is because the marginal cost of the
battery exceeds the marginal profit from additional capacity.
However, with 1600 and 3200 EVs, respectively, the overall
system cost for the simulated month reduces as the battery
size is significantly increased, implying there is an added
benefit of increased energy capacity—this is largely driven
by the fact that higher charging loads create more opportunity
for load shaping by the DER. There is a slight increase in
electricity cost for the 1600 EV load scenario with 200 and
400kWh batteries in Fig. 6. This is mainly driven by sub-
optimal battery control signals (incurring an intrinsic cost) due
to the controller’s battery model error. From Tab. IV, we report
a 115.5%, 43.1%, 36.7%, 8.3%, reduction in the combined
LCOE between the baseline and 800 kWh configuration, for
400, 800, 1600, and 3200 EV load scenarios, respectively. We
notice a downward trend in the marginal cost savings as the
scenario load increases, mainly because: (1), higher utilization
levels mean there is rarely any excess solar to sell back to the
grid and (2), the load peak is not coincident with peak prices,
(see Fig. 8), thus inherently reducing the marginal benefit from
shaping the load.

We also report the cost matrix for the month of January
in Tab. V. The overall cost for operating and delivering EV
charging services is in general higher for the month of January
than June, mainly due to lower solar irradiance levels which
limits solar PV generation. We report an 11.4%, and 10.7%
decrease in system costs (compared to baseline) for 400 and
1600 EV load scenarios respectively and in general an increase
in costs for the other scenarios.

These tables could inform a planner on the relative eco-
nomic benefits of multiple configurations, given an EVSE’s
capacity and utilization levels. For example, for the 400 EV
load scenario, the results suggest EV charging provider can
offer low rates if the solar system is allowed to sell excess
back to the grid—with the caveat that this benefit depends
on distribution circuit’s hosting capacity. There is a strong
dependence of overall system economics on environmental
conditions as well. For example, for the 400 EV scenario
in June, adding a 50 kWh battery reduced the overall cost
of energy (compared to the baseline) by more than 100%
and yielding profits. The results for January are dramatically
different, owing to the dissimilar levels of irradiation during
the respective seasons. It is worth noting that the overall cost of
the system is not static and the expected load profile changes
over time can determine if additional DER investment will be
economical for a given EV charging site.

The value of DERs to any system depends on their ability

Fig. 6. Month of June top: 400EV scenario, bottom: 1600EV scenario.

Fig. 7. Plots showing initial load and reshaped load for a day in June.

to arbitrage. As shown in Fig. 7, the load shaping ability of
the system increases as the battery energy capacity increases.
However, the marginal change of the load profile reduces
significantly as the capacity increases, which visually explains
why increasing the battery size does always not improve
overall system costs in Fig 6.

A. Transformer impacts

We estimate the impact of EV charging from the perspective
of the distribution transformers. We show the relative impacts
of the different EVSE configurations on the DCFC trans-
former. Observe that for a fixed BESS capacity, operating the
battery at a higher C-rate in general reduces transformer rating
needed for that utilization level, however sometimes it can
marginally depend on controller errors. Similarly for a fixed C-
rate, increasing the battery size reduces transformer rating for
similar utilization levels. This is because, a higher maximum
discharge power allows demand spikes to be modulated. One
can move along Fig. 9 to find the least cost grid feasible
solution for an EVSE. For this simulation, the 800 kWh battery
at a 0.5C rate has the least impact on the transformer with
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Fig. 8. Load shape for the simulated aggregate EV charging profile. The TOU
rates (dotted black) show that the peak loads roughly coincide with off-peak
and super-off-peak prices

Fig. 9. Transformer aging map for 1600 EVs in June

no accelerated aging and the transformer life being preserved
beyond its normal life. Meanwhile, in the worst case, it would
last only a couple days. With EV-Ecosim, one can answer the
question: what is the least-cost system design for an EVSE
with a 75kVA-rated transformer? A user could also investigate
the blended costs of the transformer, battery, solar, and grid
electricity over the operational lifetime of the system.

B. Power system bus voltages

Voltage violations are defined per ANSI C84.1 standard as
voltages that deviate more than 5% from the nominal. The
base case with no EVSE in the network shows 0% voltage
violations. The results below present the marginal effect of an
EV charging system under similar grid conditions.

Tab. VI and VII show the resulting voltage violation fre-
quency as percentages. In Tab. VI, we display the percentage
voltage violations with varying maximum battery C-rates,

TABLE VI
PERCENTAGE BUS VOLTAGE VIOLATIONS IN JUNE FOR 1600EV LOAD

SCENARIO WITH 50KWH BATTERY

Battery C-rate 0.1 0.2 0.5 1 2
% violations 0.0204 0.0160 0.0000 0.0000 0.0000

TABLE VII
PERCENTAGE BUS VOLTAGE VIOLATIONS FOR JUNE 1600 EV LOAD

SCENARIO WITH C-RATE 0.1 C

Battery capacity (kWh) 50 100 200 400 800
% violations 0.0204 0.0160 0.0067 0.0000 0.0000

while in Tab. VII, the C-rate is fixed and the battery capacity is
varied. We observe that at a fixed 0.1C rate, voltage violation
frequency reduced with increased capacity, with the 400 kWh
and 800 kWh batteries completely avoiding violations. The
EVSE responds to prices, which are higher in the evening
(see Fig. 8) and uncontrollable residential loads exist within
the network, which are much higher in the evening as well.
Consequently, the battery is incentivized to offset the coinci-
dent EV load and residential peak load. Notice in Fig. 7, the
the larger batteries shave more of the evening load.

By investigating the combined economic ramifications for
load scenarios, environmental conditions, and grid impacts,
one can select the best battery size for a specific use-case. For
instance, from the results displayed in this text, if the 1600 EV
load scenario generated is the most likely, then the 800 kWh
will be the best choice from the perspective of the combined
LCOE, transformer, and grid impacts.

V. CONCLUSION

We introduced EV-ecosim, a Python-based co-simulation
platform that couples DER subsystems with local distribution
networks. It performs post-simulation economic and grid-
impact analysis to aid EV operators and planners to size assets
in the most grid-feasible and economic way. We demonstrated
the capability of EV-ecosim via a case study to evaluate
collocated battery storage for an EV charging station.

In real-time, model-based controllers perform calculations
on lower-order (or lower fidelity) models due to computational
constraints. Many existing studies do not consider the unavoid-
able asymmetry that can exist between the actual physical
system and the models many linear controllers would adopt,
leading to irreducible errors that can change the economics of
the system significantly. Using EV-Ecosim in future work, we
can demonstrate this by examining varying levels of controller
model fidelity, to show that limitations in battery models can
yield unintuitive results that would otherwise be lost.

The insights gleaned from co-simulation platforms are lim-
ited by the fidelity of all the underlying models, and the
accuracy of the modelled interplay between critical physical
systems in simulation. With EV-ecosim, we can conveniently
improve various subcomponent models as higher quality data
becomes available, underlying physics are better understood,
and computational efficiency continues to improve, signifi-
cantly accelerating system design and paving the pathway to
deploy EV charging systems economically and equitably.
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