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Abstract—Augmented reality (AR) offers novel ways to design,
curate, and deliver information to users by integrating virtual,
computer-generated objects into a real-world environment. This
work presents an AR-based human memory augmentation system
that uses computer vision (CV) and artificial intelligence (AI)
to replace the internal mental representation of objects in the
environment with an external augmented representation. The
system consists of two components: (1) an AR headset and (2)
a computing station. The AR headset runs an application that
senses the indoor environment, sends data to the computing
station for processing, receives the processed data, and updates
the external representation of objects using a virtual 3D object
projected into the real environment in front of the user’s eyes.
The computing station performs computer vision-based indoor
environment self-localization, object detection, and object-to-
location binding using first-person view (FPV) data received from
the AR headset. We designed a behavioral study to evaluate the
usability of the system. In a pilot study with 26 participants (12
females and 14 males), we investigated human performance in
an experimental task that involved remembering the positions of
objects in a physical space and displaying the positions of the
learned objects on the two-dimensional (2D) map of the space.
We conducted the studies under two conditions—that is, with
and without using the AR system. We investigated the usability
of the system, subjective workload, and performance variables
under both conditions. The results showed that the AR-based
augmentation of the mental representation of objects indoors
reduced cognitive load and increased performance accuracy.

Index Terms—Human memory augmentation, augmented re-
ality (AR), computer vision (CV), artificial intelligence (AI),
spatial cognition, object-location memory, navigation, cognitive
load, performance, system usability.

I. INTRODUCTION

AUGMENTED reality (AR) displays are emerging as
a next-generation interactive technology that enriches

people’s three-dimensional (3D) visual experiences in the real-
world environment [1]. AR systems introduce people to a sup-
plemented interactive environment that can combine real and
computer-generated objects in real space [2]. In AR, virtual
objects appear to coexist with real objects in specific locations
in the real world [3]. Virtual reality (VR), another immersive
technology, introduces users to a fully computer-generated
virtual world that is independent of the real world [4]. There
is much recent work in the literature that addresses the
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perspectives of augmented visualization, sensing, and interac-
tivity introduced by AR displays to support human cognitive
processes, including memory [5], spatial cognition [6], and
navigation [7]. Thanks to spatial and environmental cognition,
people acquire, store, recall, and decode information about
relative locations and create cognitive maps that are internal
representations of space and the corresponding attributive
values and meanings [8]. According to the authors, spatial
cognition refers to internalized reflections and reconstructions
of the interacted space in thought. In [9], Burgess reviewed
advances in understanding spatial cognition from a memory
perspective. The author described egocentric and allocentric
representations of location and self-motion involved in spatial
memory, navigation, and imagery. Egocentric representations
relate to sensory information and are associated with coor-
dinate frames of specific receptors, for example, retinotopic
for vision, head-centered for hearing, and body-centered for
actions. Allocentric representations are more abstract and
focus on landmarks in the environment. Human abilities to
create cognitive maps, spatial learning, and navigation are
closely linked to memory.

Human memory stores and retrieves the information we
acquire through our senses [10]. As a complex system, human
memory relies on components, such as sensory, short-term,
and long-term memory [10]. Sensory memory refers to a
specific sensory modality (e.g., visual and auditory memory).
Working memory (also called short-term memory) has a
limited capacity and simultaneously stores and processes goal-
relevant information for the small period of time (i.e., a brief
period of up to a few seconds). Long-term memory has an
unlimited capacity and can store large amounts of information
indefinitely. According to the authors in [11], [12], working
memory supports human thinking and cognitive processes by
acting as an interface between human perception, long-term
memory, and action.

The working memory system comprises a central executive
system and two storage systems (i.e., the phonological loop for
verbal data chunks and the visuospatial sketchpad for visual-
spatial data chunks) [12]. In [13], Smith et al. described three
working memory systems that process spatial, object, and ver-
bal information. The authors related spatial and object coding
phenomena to two distinct visual processes that encode “what”
and “where” information. Postma et al. [14] examined the
neurocognition of object-location memory. The authors found
that object-location memory is functionally divided into three
processing mechanisms—namely, object processing, spatial-
location processing, and object-to-location binding. According
to O’regan [15], visual retention is mainly redundant and
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Fig. 1. Our AR-based human memory augmentation system (ExoMem) consists of wearable (a) and computing (b) modules communicating with each other
wirelessly.

is followed over time by continuous generation of memory
records. As Baddeley noted in [12], visual working memory
and its verbal counterpart have a limited capacity (i.e., up to
three or four objects).

The mystery behind the strict limits on how much data
that can be kept in mind at once (3-5 meaningful items)
was explored in [16], [17]. In [18], Sweller described recent
advances in the cognitive load theory (CLT) and introduced a
new line of research aimed at improving learning through an
innovative design that takes into account the limits of internal
working memory capacity. In [19], Van et al. presented several
assumptions of the CLT related to memory, learning processes,
the different types of cognitive load (i.e., intrinsic, extraneous,
and germane), and the effects of design on learning [19].

Over the last decade, many studies have presented AR-
enhanced systems for training and supporting cognitive
skills [20]–[23]. However, there is limited work attempting
to augment human memory. The best-known wearable appli-
cation to augment human memory was SenseCam [24]. It was
presented over a decade ago and used a wearable camera to
record the user’s day by capturing images every 30 seconds.
Among the recent applications dealing with human memory
augmentation and AR, most, if not all, AR-based approaches
have been presented to aid the memorization process or train
specific types of memory [25]. In the literature, our work is the
first to utilize an augmented environment and infrastructure-
free solution for indoor user localization. We present a new
approach to augment human memory based on AR visual-
izations and AI data processing. The AR system constructs
the external augmented representation of objects in the indoor
environment to replace internal mental representations.

We have named our human memory augmentation sys-
tem “ExoMem” (see Fig. 1). The system consists of two
main components: an AR headset and a computing station.
The two components exchange data over a wireless network
created by a router. The AR headset runs the Unity-based

application that senses the environment, sends image data
to the computing station, and receives processed information
about the environment. Based on the received data, the AR
application creates and updates a virtual 3D object with the
user’s current position, previous positions, and the locations
of detected objects in the environment. All the information
is incorporated into the virtual 3D object, which shows a
2D plan of the indoor environment projected in front of the
user’s eyes in the real environment. Computer vision (CV) and
artificial intelligence (AI) algorithms run on the computing
station to perform indoor localization of the user and register
the locations of objects in the environment. In a pilot study,
26 human participants (12 females and 14 males) used the
AR system to create an external representation of ten objects
placed on three floors of a building and later completed a
computer-based test in which they displayed the locations of
the previously learned objects on the 2D map of the building.
Participants also completed the same procedure without the
assistance of the AR system. They had to create an internal
mental representation of the objects in the environment and
complete the computer-based test using only their memory.
We examined participants’ cognitive load and performance
when they completed the object location memorization and
map-pointing activities under two conditions—that is, with
and without the AR system. We evaluated the usability of the
system and investigated whether the gender of our participants
affected the results of the behavioral study. Our work showed
that the AR and AI-enhanced system can generate an aug-
mented external representation of objects in physical space by
interacting with the environment to replace the internal mental
representations and support the human cognitive system.

The rest of the article is organized as follows: Section II
reviews advances in cartography, CV, AI, and AR-based appli-
cations in navigation, spatial learning, and memory. Section III
describes the software and hardware used in the system, the
experimental setup, including object location memorization
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and map-pointing activities, experimental procedure, and ex-
perimental measures. Section IV presents the study results with
a thorough statistical analysis. Section V discusses the results,
including an overview of the limitations of our study and
suggestions for future research. Finally, Section VI concludes
the paper.

II. RELATED WORK

Cartography deals with the art, science, and technology
behind the creation and use of maps [26]. Key elements are
the collection, acquisition, processing, and display of spatial
data. Clarke et al. [27] summarized recent developments in
cartographic research and divided them into different cate-
gories such as information visualization, cartographic data,
spatial analysis, methods, and geographic information science.
Yuan et al. [28] provided an overview of the relationship
between cartography and information visualization. White et
al. [29] presented the concept of remote sensing imagery and
its role in information acquisition and reasoning in our natural
environment [29]. According to the authors, technological ad-
vances introducing new sensing systems, new data types, new
visualizations, new software systems for image processing and
AI systems for scene and pattern recognition have shaped the
state of the art in remote sensing and perception over the past
two decades. The authors noted that technological advances
have been accompanied by advances in the understanding of
perceptual learning and reasoning in image analysis. In [30]–
[32], the researchers explored the application of empirical and
technological methods in the field of design and scientific
visualization, including interactive maps and virtual reality
environments supporting phenomena of digital interactivity.
According to Roth et al. [31], the interactivity phenomena
of interactive maps and visualizations require that the map
user be involved in the creation of the representation, rather
than just being a passive reader of the information. The
authors pointed out that millions of people worldwide use
interactive map services, such as Apple Maps, Google Maps,
and OpenStreetMaps on a daily basis, indicating the high
usability of such augmentative systems.

Emerging AR technologies enable the integration of vol-
umetric virtual visualizations into the specified location in a
3D environment [5]. Few works relate AR to the graphical
user interface used to interact with spatial data, also referred
to as an augmented map [6]. In [33], the authors discussed
the potential of augmented maps to enrich the functionality
and performance of printed maps and to take user interaction
with cartographic data to a new level. The interactivity and
visualization capabilities of AR make a valuable contribution
to supporting activities such as spatial orientation, spatial
navigation, search processes, and decision-making [5]. Ac-
cording to Bobrich et al. [33], the usability of AR-enhanced
augmentations is highly dependent on the user experience and
the capabilities of a computer program. The authors noted that
AR combines the latest inventions and capabilities of computer
science and presents them to the user. For example, the inte-
gration of advanced computing and remote tracking systems
in CV has led to advances in a wide range of intelligent

algorithms, such as simultaneous localization and mapping
(SLAM), object detection and tracking, facial emotion and
expression recognition, human action and activity recognition,
hand gesture recognition, and head pose and gaze estima-
tion [34]. Satellite-based geospatial positioning was utilized
for outdoor navigation [35]. For indoor navigation, methods
based on wireless signals (e.g., signals from Wi-Fi routers and
Bluetooth beacons) and computer vision (e.g., features from
images and fiducial markers) were developed [36].

In the last two decades, many researchers, engineers, and
practitioners have proposed new approaches to navigation,
tracking, and 3D positioning in AR. For example, a SLAM-
based 3D positioning system was designed for an AR handheld
system [37]. Rehman et al. [38] developed an AR-based indoor
navigation system that used a pre-scanned 3D map of the
surroundings (3D point clouds) to track the environment.
Wearable cameras, gaze trackers, and CV algorithms have
been used to recognize objects and actions in the environment
so that video of a detected object and associated actions can be
displayed based on user gaze [39]. In [40], Calle-Bustos et al.
presented an AR application for supporting the user navigation
indoors based on AR visual and auditory stimuli.

In addition, many papers have presented behavioral experi-
ments using various AR-enhanced approaches to study visual-
spatial working memory and visual perception. For example,
Carbonell et al. [6] investigated how AR-based visualization
of landmarks affects map reading during comprehension of
geographic relief. Similarly, in their recent work, Keil et
al. [5] studied whether AR-based holographic grids on the
floor help people to form a better mental representation of
the interacted space and support spatial learning. In [7], Chen
et al. explored how AR-based instructions assist firefighters
in wayfinding and decision-making during emergencies. Juan
et al. [23] developed an AR-based task to assess the spatial
short-term memory of preschool and primary school-aged
children. In their recent work, Munoz et al. [41] presented a
framework for developing an AR-based mobile application to
assess human spatial short-term memory. In [42], Caluya et al.
studied the impact of the spatial memory training framework
on short- and long-term memory when conducted in AR and
VR environments.

Furthermore, many works have analyzed AR-based visu-
alization systems from the perspective of cognitive workload.
For example, Atici et al. [20] examined how AR glasses affect
the cognitive load of individuals working on the assembly line
of an automotive company. During the behavioral experiment,
workers completed the diffusion task (i.e., placing ten materi-
als from the shelf into the appropriate carts) with and without
the assistance of AR glasses. They reported lower cognitive
load when they completed the task with the AR glasses.
In [21], the authors evaluated an AR-assisted data collection
system that supports the principles of spatial and temporal
contiguity necessary in physics laboratory experiments. The
authors found that the AR-based workflow reduced under-
graduate students’ cognitive load and helped them to avoid
split attention while learning. In [22], the AR-based training
system enabled junior nursing students to have an overview of
internal structures and anatomical landmarks during clinical
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Fig. 2. Experimental task with two activities and selected objects. (a) Activity 1: Memorization of object locations placed along corridors during a
20-minute walking tour of three floors. (b) Ten objects were selected for the experimental task. (c) Activity 2: Showing the locations of the previously learned
objects on the map during the computer-based test showing three 2D plans of floors 4-6 of the building.

skills training.

III. SYSTEM DESIGN AND EXPERIMENTAL SETUP

A. System Design

Our AR-based human memory augmentation system, “Ex-
oMem”, is shown in Fig. 1. The first part of the system is
a Microsoft HoloLens 2 mixed reality headset (see Fig. 1a).
This AR headset is equipped with see-through holographic
lenses, sensors for human and environment understanding, a
holographic processing unit with 64-GB UFS 2.1 data storage,
the Windows Holographic operating system, and lithium-ion
batteries that allow 2-3 hours of active use. The open-source
CV application programming interfaces and the manufacturer’s
tools enable the wireless transmission of image data from the
sensors to other computing devices. The second part of the
AR system is an x64-based laptop computer running Ubuntu
16.04, with the Robot Operating System (ROS) installed (see
Fig. 1b).

Wearable module: The main component of the wearable
module of “ExoMem” is an FPV application running on
the HoloLens 2 AR Goggles to sense the environment and
communicate with the AI part of the system (see Fig. 1a).
The Unity 3D 2018.4.28f1 game development engine was used
to build and run the application on the Universal Windows
Platform. The C# programming language was used in the
codes to transmit the FPV data from the AR goggles to the
laptop, receive the AI-processed data, and create an external
representation of the objects in the indoor environment. The
virtual 3D object was integrated with virtual 2D plans of
three building floors and information about the user’s current
position, previous positions, and locations of objects in the

environment. On the external representation, the application
marked the path walked as green spheres and detected objects
as spheres in other colors. The colored spheres on the virtual
3D object indicated the user’s position when the objects were
first detected. The Unity project and source codes for sensing
the indoor environment using the AR HoloLens 2 headset
and creating the external representation of the objects in the
environment are available in our GitHub repository1 under the
MIT license.

Computing module: The main software components of the
“ExoMem” computing module are illustrated in Fig. 1b. For
positioning the user in the research building of Nazarbayev
University, we used the CV-based method for camera localiza-
tion in indoor spaces, which was previously developed in [43].
The proposed localization method uses ArUco fiducial markers
and the OpenCV library [44] to find the camera positions over
time with respect to the registered markers in the building. The
computing module of the system uses the ROS environment
to receive FPV data from the HoloLens and run the user
localization framework. The FPV data were also used to detect
objects. For this purpose, we used the real-time object detector
YOLO, developed in the Darknet framework [45]. The YOLO
object detector is a deep end-to-end network that receives
RGB image data as input and outputs the object labels and
bounding box information as a string message. Specifically,
in the AR part of the system, we used a pre-trained YOLO
Version 3 object detection model trained on the COCO dataset
with the default 80 object categories [46]. From these 80
categories, we selected ten objects for the experimental task.
These ten objects were those that could be easily found in the

1https://github.com/IS2AI/ExoMem-AR-Memory
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laboratory environment (see Fig. 2b). The code running the
YOLO object detector in our system was written in Python 3.7
and integrated into the ROS environment. All codes utilized
for CV-based indoor user localization and object detection
using FPV data from HoloLens 2 can be downloaded from
our GitHub repository1.

Data communication: The communication pipeline between
the two modules (i.e., wearable and computing) was set up
using a Wi-Fi network and TCP/IP network protocol via a
portable router. The FPV application in the HoloLens sent
images to the computing module at ten frames per second.
To construct an external representation of objects in the envi-
ronment, the AR goggles received string messages from the
computing module, performed message parsing, and updated
the virtual 3D object that represented the object and user
location data processed by the AI part of the system. In
the HoloLens, different color spheres were created on the
augmented visualization about twice per second, showing the
external representation of objects and the user’s past and
current positions in the environment.

B. Experimental Setup

We conducted two experimental sessions with each partic-
ipant on two separate days with a two-week break between
sessions. We scheduled a two-week break between sessions
to allow participants sufficient time to forget the locations of
the objects after the first session before coming to the second
session. On both days (i.e., sessions), participants completed
the same experimental task but under two conditions (i.e., with
and without AR). To ensure that the order of conditions did not
affect the results, we randomly divided our participants into
two groups, taking care to maintain a gender balance between
the groups. The first group completed the first session with the
AR system and the second session without the AR system. The
second group completed the same sessions in reverse order. We
collected data three days a week, inviting two people to the
experiment each day. We spent two weeks collecting the first
set of data from all participants in the first group (6 females
and 6 males). Then we invited the same individuals for the
second session in the same order. Once we completed two data
collection sessions for the first group of participants, we began
data collection for the second group. We followed the same
data collection procedure for the second group of participants
and maintained the two-week break between the two sessions.

In both experimental sessions, we examined participants’
cognitive workload. In each experimental session, participants
completed two activities (e.g., memorizing object locations
in the environment and pointing to the locations of learned
objects on the 2D map of the environment). Three floors of
a building on a university campus served as the experimental
site. Each floor was 57 m by 90 m, and the length of the
corridors on each floor was approximately 150 m.

Object location memorization activity (Activity 1): In the
object location memorization activity, participants completed
a 20-minute walking tour of the three floors of the building.
They had to memorize the locations of ten objects (one at
a time) that they saw along the way (see Fig. 2a). For this

purpose, we selected ten objects of different sizes and purposes
that could be easily found in the laboratory environment (see
Fig. 2b). The selected objects were placed along the corridors
of the floors as shown in Fig. 2a. The positions of the objects
were fixed at the beginning of the experimental study and were
not changed thereafter, nor was the walking path. In this way,
we could ensure that all participants walked along the same
path and saw the same objects in exactly the same locations.

Map-pointing activity (Activity 2): The map-pointing activ-
ity required participants to complete a computer-based test, as
shown in Fig. 2c. The test was designed as a desktop applica-
tion in which participants were asked whether they had seen
a particular object. If so, they were asked to mark its position
on the corresponding 2D floor plan with a mouse click. The
desktop test consisted of 15 questions. Ten questions were
related to the ten objects presented to the participants during
the object location memorization activity. Five questions were
related to five objects that were not presented to the user during
the object location memorization activity.

Each participant received instructions on how to use the
desktop application during the map-pointing activity and a
sample question prior to the computer-based test. Ideally, par-
ticipants would only mark the locations of the objects that were
shown to them during the object location memorization activ-
ity. For the five objects that were not shown to them during
the object memorization activity, participants should indicate
that they had not seen the objects. Participants were informed
that they were not required to mark the exact positions of
the memorized objects. Positions indicated within a circle
with a radius of two meters around the positions recorded by
the developed 3D positioning system were counted as correct
responses. The desktop application recorded the time each
participant took to complete the test.

Experimental procedures for the “with AR” condition: In
the experimental session, the participant was asked to put on
the AR headset and complete the object location memorization
and map-pointing activities. At the beginning of the object
location memorization activity, the researcher switched on the
Unity-based application in the AR headset and helped the
participant to put on the headset. While the participant walked
along the three floors of the building with the AR headset (see
Fig. 3b), the researcher followed the participant and wheeled
a trolley containing the computing station (i.e., a laptop and
a Wi-Fi router), as shown in Fig. 3c. The 3D object with an
external representation of the objects and the path walked (see
Fig. 3a) was updated as the participant followed the walking
path. While walking, the participant was asked to hold their
head slightly upward so that the ArUco markers attached to
the ceilings along the walking path were in their field of view.

On the walking path, the participant saw different objects.
Once they reached an object, the participant was instructed
to stop in front of the object, first look at the marker on the
ceiling near the object for one second, and then look at the
object for another second. At that moment, the colored sphere
with the label of the object was marked on the 2D virtual plan
of the building, and was integrated to the real environment as a
virtual 3D object in front of the user’s eyes. As the participant
walked along the path, they could see how the 3D object
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Fig. 3. Experimental procedure for the “with AR” condition (Activity 1: Object Location Memorization). (a) The external representation of the objects
in the environment and the path walked. (b) The participant completes the walking tour of the corridors using the AR system. (c) The trolley with the
computing station of the AR system wheeled by the researcher.

was updated in the AR environment. At the end of the object
location memorization activity, the participant had the virtual
2D map of the building in front of their eyes, in which the
objects and the walked path in the environment were drawn,
as shown in Fig. 3a.

Once the object location memorization activity was com-
pleted, the participant was asked to remove the headset. The
researcher switched off the Unity-based application, which
created a digital representation of the objects in the environ-
ment and the user’s walked path. The participant was informed
that the digital external representation of the objects in the
environment, showing the object locations and the walked
path, was saved in the memory of the AR headset, and that they
could use the recorded information during the map-pointing
activity.

After completing the object location memorization activity,
the researcher and participant returned to the laboratory. The
participant had a five-minute break and was asked to complete
the Unweighted/Raw NASA-Task Load Index, also referred
to as Raw TLX (RTLX) [47] and System Usability Scale
(SUS) [48] questionnaires. These questionnaires were used to
evaluate the cognitive load experienced by the participant dur-
ing the object location memorization activity and the usability
of the AR system, which was used to create the digital external
representation of the objects placed in the environment.

While the participant was completing the questionnaires,
the researcher switched on another Unity-based application
on the AR headset that placed the 3D object with an external
representation of objects at a fixed position in the real environ-
ment. When the user changed the position or turned their head
in different directions, the virtual 3D object with an external
representation of objects remained in the location where it
was first initialized. For ease of use, the researcher switched

on the second application so that the virtual object was placed
in front of the participant near the computer on which the
computer-based test was running to complete the map-pointing
activity (see Fig. 4b). The participant was asked to put on
the AR headset and use the digital external representation of
the objects in the environment to answer the test questions
(see Fig. 4a). Later, the participant was asked to fill in the
questionnaires describing their cognitive load after the map-
pointing activity and evaluating the usability of the AR system.
After a few minutes, the participant was asked to complete the
same questionnaires, but this time describing their cognitive
load after completing both activities. The participant was also
asked to evaluate system usability for the entire experimental
session, which consisted of performing two activities—that is,
memorizing the location of objects within the building and
later showing the location of the memorized objects on the
map of the building.

Experimental procedures for the “without AR” condition:
In the experimental session without AR, the participant did
not use the AR system. The researcher accompanied the
participant during the session to prevent them from getting
lost. At the beginning of the object location memorization
activity, the participant received the printed plans of the three
floors of the building. The plans indicated the position of the
elevators that could be used to move between the floors and the
corridors that the participant had to walk along. The researcher
indicated their position on the plan of the fourth floor when
they started the experimental session. The participant was
informed that they would first walk along the three floors
of the building, memorize the locations of the objects they
would see, and then return to the laboratory to complete a
computer-based test. The printed plans of the three floors that
were given to the participant were the same as those used
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Fig. 4. Experimental procedure for the “with AR” condition (Activity 2: Map-Pointing). (a) A participant taking the computer-based test with the AR
system. (b) The external representation of objects in the environment is integrated into the real environment as a virtual 3D object.

for the computer-based test. As the participant walked along
the corridors of the three floors, they saw various objects on
tables. Their task was to memorize the locations of the objects
they saw using the floor plans provided. The participant was
not given a precise strategy to memorize the objects and their
corresponding locations. Ideally, the participant should locate
their position on the floor plan and memorize the object nearby
based on the floor plan.

After completing the object location memorization activity,
the participant and researcher returned to the laboratory. The
participant had a five-minute break and was asked to fill in
the Unweighted/Raw NASA-TLX questionnaire to indicate the
cognitive load experienced during the object location mem-
orization activity. In the meantime, the researcher launched
the test on the laboratory computer to continue with the
map-pointing activity and asked the participant to answer the
questions of the test. The participant could use the printed
floor plans that they had received at the beginning of the object
location memorization activity. Once the test was completed,
the participant was asked to fill out the Unweighted/Raw
NASA-TLX questionnaire to indicate the cognitive load they
experienced after completing the map-pointing activity. A few
minutes later, the participant was asked to complete the same
questionnaire. This time, the participant was asked to rate the
cognitive load they had felt after completing the two activities
in the experimental session.

Participants: A total of 26 participants (12 females and 14
males) from the university community (students, researchers,
and faculty members) were recruited to participate in the
behavioral study. Their ages ranged between 20 and 39 years.
We randomly divided participants into two gender-balanced
groups: Group A (6 females and 6 males) and Group B (6
females and 8 males). The mean age (M) of participants in
the two groups was 27 years with a standard deviation (SD)
of 5 years (M=27 years, SD=5 in Group A and M=27 years,
SD=5 in Group B). According to the Shapiro-Wilk test, the
age of the participants in the two groups did not follow a
normal distribution. The Mann-Whitney U test showed that
the age difference between the two groups was not statistically
significant (U = 80.5, p = .44). Group A completed the
experimental task with and without AR assistance on two days
(i.e., sessions) with a two-week break between the sessions. On
Day 1, they completed the experimental task, which consisted

TABLE I
EXPERIMENTAL DATA COLLECTION PROCEDURE FROM THE

PARTICIPANTS

Day 1 Day 2
Activity 1 Activity 2 Activity 1 Activity 2

Object Location Map Object Location Map
Memorization Pointing Memorization Pointing

Group A AR AR No AR No AR
Group B No AR No AR AR AR

of two activities, with the AR system; on Day 2 (two weeks
later), they completed the same experimental task without the
system. Group B completed the same procedure in reverse
order (i.e., on Day 1, they did not use the AR system, but, on
Day 2, they did) (see Table I).

Ethical Approval. The Institutional Research Ethics Com-
mittee of Nazarbayev University approved the behavioral
study with human participants. All study participants provided
written informed consent.

C. Measures

1) Subjective Assessment: In both activities involved in the
experimental task, we compared participants’ mental work-
load when they used the memory augmentation system and
when they did not use it. To measure participants’ mental
workload, we used the Unweighted/Raw NASA-Task Load
Index (NASA-TLX), referred to as Raw TLX (RTLX) [47],
as a subjective tool to assess mental workload. This index
considers human cognitive workload across six dimensions,
including mental demand, physical demand, temporal demand,
performance, effort, and frustration. For these qualitative
assessments, participants rated their experience after each
task. In this way, we studied the impact of each activity on
participants’ cognitive state across multiple dimensions. For
each dimension, test scores ranged from 0 to 100 with a
corresponding interpretation from “very low” to “very high”.
The rating scale definitions used in NASA-TLX and further
details can be found in [49]. RTLX results were analyzed using
a dependent two-sample t-test (i.e., paired-samples t-test) (p
≤ 5%).

2) Objective Assessment: Along with the subjective method
for determining cognitive workload, we also utilized objective
methods for quantitative measurements. To this end, we used
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performance evaluation metrics during the computer-based
test in the map-pointing activity. The computer-based test
in Fig. 2c was used to collect quantitative evaluation data.
The desktop application recorded participants’ responses to
15 questions and response times. The desktop application was
designed on the Unity 3D 2021 game development platform
and collected two sets of quantitative data: error rate and task
completion time. If the user’s response was more than two
meters off the correct position, the system considered it an
error. The error rate indicated the ratio of incorrect answers
to all answers as a percentage. The task completion time
indicated the total time it took each participant to complete
the test. Mean error rates and response times were compared
between the “with AR” and “without AR” conditions. The
ratings were analyzed using a paired-samples t-test with a
significance level of 5% for all comparisons.

3) System Usability: To evaluate the usability of the “Ex-
oMem” system, we employed the SUS score, which is a
composite measure of the overall usability of a system [48].
This is a subjective evaluation method of usability based on
a post-task questionnaire completed after testing the system.
The SUS score ranges from 0 to 100 and has corresponding
interpretations along the usability and acceptability scales.
The calculation of the score and further details can be found
in [48].

IV. RESULTS

A. Subjective Assessment

The subjective assessment of mental workload for each
activity performed by two groups of participants in two
conditions with and without the AR system is shown in
Fig. 5. Participants experienced much less mental demand and
effort when using the AR system in both activities. Similarly,
participants’ experience of temporal demand and frustration
decreased with the AR system in each activity. A paired-
samples t-test revealed a significant effect of the AR system on
cognitive demand [t(50) = 10.19, p < .001], temporal demand
[t(50) = 4.31, p < .001], performance [t(50) = 5.28, p < .001],
effort [t(50) = 9.91, p < .001], and frustration [t(50) = 4.22, p
< .001]. A paired-samples t-test showed no significant effect
of the AR system on physical demand [t(50) = 1.47, p = .15]
in either activity.

B. Objective Assessment

Figure 6 shows participants’ results on the map-pointing
activity. We note that the error rate with “ExoMem” for both
groups of participants was 3.85% (SD = 6.30), while the error
rate without “ExoMem” was 28.97% (SD = 17.58). This shows
that the error rate in the map-pointing activity was reduced
7.52 times when the AR system was used (see Fig. 6a). A
significant difference in error rate was observed between the
“with AR” and “without AR” conditions (t(50) = 7.99, p <
.001). When using the AR system during the map-pointing
activity, 46.7% of the errors resulted from incorrect operation
of the system, and 53.3% of the errors were caused by partic-
ipants incorrectly using the information presented to them by
the system. The completion time of the computer-based test for

the map-pointing activity with “ExoMem” was 150.9 seconds
(SD = 66.51), while without the AR system it was 206.1
seconds (SD = 105.52). In other words, task completion took
27% less time when the AR system was used (see Fig. 6b). A
paired-samples t-test showed a significant difference between
the “with AR” and “without AR” conditions in completion
time (t(50) = 2.36, p = .026).

C. Effects of Gender on Performance in Objective Assessment

Studies of spatial tasks among children revealed that boys
performed better on purely spatial tasks, whereas girls per-
formed better on verbal tasks [50]. In the object location mem-
orization task, boys and girls showed similar performance.
However, female participants performed better than male par-
ticipants in adulthood. In our work, we also examined whether
the gender difference of our participants affected performance
during the experimental task in our behavioral study. The error
rate and completion times for male and female participants are
illustrated in Fig. 7. An independent-samples t-test revealed
no significant difference in total response time (including the
“with AR” and “without AR” conditions) between genders
(t(50) = 0.104, p = .46) and in total error rate between genders
(t(50) = 0.41, p = .34).

D. Effects of the Experiment Order on Performance

To explore if the order of the conditions “with AR” or
“without AR” could affect the results of the behavioral study,
we randomly divided our participants into two groups. One
group of participants (Group A) completed the experimental
task with the AR system on the first day and without the
AR system after two weeks. The other group (Group B), on
the other hand, completed the experimental task without the
AR system on the first day and with the AR system after
two weeks. An independent-samples t-test showed that the
order of conditions (i.e., “with AR” and “without AR”) in
our behavioral study (between Groups A and B) made no
significant difference in error rate (t(50) = -0.008, p = .49)
and completion time (t(50) = -0.69, p = .25).

E. System Usability

Figure 8 shows the system usability results reported by par-
ticipants after they completed the object location memorization
and map-pointing activities with the AR system. We found that
the SUS scores calculated based on the responses averaged
83.5 (SD = 12.31) for Activity 1 (i.e., memorization of object
locations), 90.2 (SD = 10.02) for Activity 2 (i.e., pointing the
locations of the learned objects on the map), and 87.6 (SD =
10.98) for both activities overall in the two groups. According
to Sauro et al. [51], a SUS score above 80.3 suggests that the
system will be recommended to friends.

F. Correlation Analysis

We also explored the correlations between error rate, com-
pletion time, mental demand, effort, temporal demand, frustra-
tion, physical demand, performance, and SUS measures. The
results of this correlation analysis are presented in Table II.
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Fig. 5. Averag Raw NASA-TLX (RTLX) Scores. Charts a-f show the mean and standard deviation values of average RTLX scores of participants in Group
A (nA = 12), Group B (nB = 14), and overall (n = 26). Participants in Group A (nA = 12) completed Activity 1 (A1) - Object Location Memorization and
Activity 2 (A2) - Map-Pointing with AR system (AR) on Day 1 and without AR system (No AR) on Day 2. Participants in Group B (nB = 14) completed
Activity 1 (A1) - Object Location Memorization and Activity 2 (A2) - Map-Pointing without AR system (No AR) on Day 1 and with AR system (AR) on
Day 2.

The correlation is considered weak when the absolute value
of the correlation coefficient r is less than 0.3, moderate
when r is between 0.3 and 0.5, and strong when r is higher
than 0.5 [52]. In our case, the error rate was strongly and
positively correlated with the time it took female participants
to complete the map-pointing activity with the AR system.
The completion time of the map-pointing activity completed
with the AR system was also strongly and positively correlated
with the temporal demand and performance of male partici-

pants. SUS measures of male participants were highly and
negatively correlated with frustration. RTLX measures were
generally correlated with each other. For instance, the mental
demand and effort of both genders were highly and positively
correlated in both conditions (i.e., “with AR” and “without
AR”). Temporal demand had a strong positive correlation with
the frustration and physical demand of female participants
and with the physical demand of male participants in both
conditions. Female participants’ frustration and physical de-
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Fig. 6. Objective assessment of performance during map-pointing activity (Activity 2) with and without the AR system (AR and No AR). Charts
a-b show the mean and standard deviation values of the average error rates and test completion times of participants in Group A (nA = 12), Group B (nB =
14), and overall (n = 26). (a) Average error rates (%). (b) Average task completion times (s).

Fig. 7. Effects of gender on objective assessment of performance during map-pointing activity (Activity 2) with and without the AR system (AR
and No AR). Charts a-b show the average error rates and test completion times of participants across genders in Group A (nA = 12), Group B (nB = 14),
and overall (n = 26).

mand showed a strong positive correlation. Interestingly, male

Fig. 8. System Usability. The chart shows the mean and standard deviation
values of the average SUS scores rated by participants in Group A (nA =
12), Group B (nB = 14), and overall (n=26).

participants that perceived higher mental demand were more
likely to perform better.

V. DISCUSSION

Over the last decades, cartographic data and mapping have
moved into the realm of sensors (e.g., global navigation satel-
lite system receivers and light detection and ranging (LiDAR)
that support location-based applications to track the movement
of people, vehicles, ships, and aircraft [35]. State-of-the-art AR
head-mounted displays (HMDs) (e.g., Microsoft HoloLens 2)
are equipped with a variety of sensing technologies (visible
light cameras for head tracking, infrared cameras for eye
tracking, a time-of-flight depth sensor, an inertial measure-
ment unit (IMU), a video camera, a five-channel microphone
array, built-in spatial sound speakers, and high-speed wireless
communications) [53]. We sought to combine software and
hardware features of the emerging technology (i.e., HoloLens
2 AR headset, CV, and AI) to develop an AI-supported AR
system capable of sensing the environment and creating an
external representation of objects in space to replace internal
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TABLE II
CORRELATIONS BETWEEN OBJECTIVE AND SUBJECTIVE MEASURES

Error rate
Completion

Time
RTLX

SUS
Mental
demand

Effort Temporal
demand

Frustration Physical
demand

Performance

Error rate
AR 1 0.912 -0.081 0.286 -0.02 0.0381 0.008 -0.08 -0.292

No AR 1 -0.076 -0.156 -0.292 0.116 0.454 0.182 0.084 N/A

Completion
time

AR -0.365 1 0.24 0.03 -0.23 0.153 0.187 -0.1 -0.203

No AR 0.121 1 -0.363 -0.123 0.111 -0.047 0.169 -0.02 N/A

R
T

L
X

Mental
demand

AR -0.05 0.34 1 0.529 0.93 0.628 0.671 0.006 0.14

No AR 0.03 -0.15 1 0.683 0.301 0.277 0.407 0.154 N/A

Effort
AR -0.12 0.415 0.971 1 0.635 0.628 0.7 -0.329 -0.455

No AR -0.059 -0.228 0.914 1 0.156 0.079 0.274 0.482 N/A

Temporal
demand

AR -0.171 0.59 0.911 0.919 1 0.643 0.601 -0.141 0.187

No AR -0.415 -0.324 0.204 0.220 1 0.708 0.711 -0.282 N/A

Frustration
AR 0.027 0.127 0.884 0.885 0.786 1 0.75 0.01 -0.439

No AR -0.307 -0.138 0.197 0.157 0.011 1 0.698 0.112 N/A

Physical
demand

AR -0.006 0.397 0.913 0.902 0.918 0.8137 1 -0.139 -0.479

No AR -0.321 -0.183 0.19 0.236 0.838 0.372 1 0.165 N/A

Performance
AR -0.254 0.735 0.648 0.649 0.831 0.350 0.698 1 0.248

No AR 0.402 0.087 0.715 0.639 0.028 0.672 0.114 1 N/A

SUS AR -0.011 0.027 -0.406 -0.372 -0.258 -0.527 -0.490 -0.028 1

Male and female participants’ measures were highlighted with blue and red colors, respectively. Bold text values indicate strong correlations.
SUS measures in the “No AR” columns are “N/A” in the table, because the SUS questionnaire was not taken when the experimental task,
which consisted of two activities, was performed without the AR system.

mental representations. In designing the system, we relied on
the internal mechanisms thanks to which people process visual
and spatial information. We also presented the methodology
of analysis of cognitive workload, performance, and usability
in the experimental task in the behavioral study.

Our AR and AI-enhanced human memory augmentation
system performed the following functions in the behavioral
study: (1) acquiring FPV data from AR goggles for CV-based
indoor localization and object detection, (2) establishing two-
way communication between AR and the AI parts of the
system through a wireless network. Our system integrated AR
and AI technologies to sense the environment, exchange data
over the wireless network, construct the external representation
of objects in the indoor environment, and display the recorded
data as a virtual 3D object in the AR environment. Based
on the subjective evaluations of cognitive load and perfor-
mance, we demonstrated that our system helped to reduce
mental workload and improve performance in the experimental
task, which involved two activities—namely, memorization
of object locations and marking the locations of the learned
objects on the map. Statistical analysis of the records of
error rate and time to complete the map-pointing activity
in the two conditions (with and without AR) revealed no
significant differences between the genders. We also ana-
lyzed the correlations between the reported variables (i.e.,

error rate, completion time, mental demand, effort, tempo-
ral demand, frustration, physical demand, performance, and
usability scores). Interestingly, error rate showed a strong
and positive correlation with completion time for female
participants. In contrast, for male participants, there was a
strong and positive correlation between completion time and
temporal demand and performance during the map-pointing
activity performed with the AR system.

Compared to a controlled research environment, realistic in-
door environments posed technical challenges for our system.
Firstly, excessive natural light through windows negatively
affected the operation of the AR headset, preventing it from
correctly sensing the environment [54]. Specifically, once
perception problems arose, the performance of the AI part
of the system also degraded. This led to the failure of user lo-
calization and object detection. Secondly, the user localization
method also had its inherent technical limitations. In particular,
our implementation depended on ArUco fiducial markers [44],
which had to be placed in the indoor environment and whose
coordinates were recorded in advance. Moreover, such user
localization method was subject to inaccuracies, especially
along the vertical z-axis, demonstrating that the calibration
process of the camera device is vital for localization in multi-
story buildings. Finally, the object detection method used
also had some drawbacks. While large- and medium-sized
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objects could be recognized from a distance of two meters,
the detection of smaller objects (e.g., the computer mouse in
our experiments) required a distance up to three times shorter.
Thus, the system became less comfortable for users when more
small objects were present in the experimental scenario.

In addition, there were limitations in our approach related
to the experimental procedure. For example, the wearable and
AI modules of the system were switched on and off by the
instructor during the two activities in the experimental task.
In the object location memorization activity, the instructor
followed the users along the path and checked whether the
localization markers and objects were correctly recognized.
In the map-pointing activity, the instructor switched on and
off the application that loads and displays the virtual 3D
object with the external representation of the object in the
environment using an AR headset. In the real world, users
themselves would need to learn how to turn on and off the
wearable and AI modules of the system. Such a learning
process could increase the user’s cognitive load and affect
the overall usability of the system. In future experiments,
participants should use the system autonomously to obtain a
more realistic cognitive load and performance evaluation.

According to Clarke [27], the ideas that are considered
innovative and fresh today tend to inspire and promote the
creation of new approaches, methods, and technologies in
the future. Further integration of digital interactivity into our
daily lives requires a detailed analysis of the perceptual,
cognitive, cultural, and practical aspects that influence the
human experience with interactivity and visualization [30],
[31]. Roth et al. [31] presented emerging interdisciplinary
recommendations for future research related to user studies in
cartography with a focus on interactive maps and visualization.
According to the authors, usability of such interactive visual-
ization systems requires that users and designers meet at the
interface to provide a positive experience. Interactivity requires
that users no longer remain passive in the visual representation
of spatial information. As Muehlenhaus et al. [32] noted, map
interactivity allows users to create a representation that best
suits their goals and context of use.

In general, spatial perception and memorization tasks re-
quire mental and cognitive demands. Although our under-
standing of human cognition and memory is improving and
is supported by technological breakthroughs in many areas,
such as computing power, computer vision, and artificial
intelligence, assistive solutions to augment human memory are
still in the prototype stage and mainly focus on training the
memory or supporting the memorization process [25]. New
solutions to replace internal representation with the external
technology generated are yet to be developed. The results of
our work highlight the potential of AR and AI technologies
in developing a new generation of intelligent technological
systems capable of supporting human cognition by reducing
the need to rely only on the internal representation of spatial
information. For future researchers who wish to further de-
velop the presented approach to human memory augmentation,
we suggest conducting a behavioral study involving more indi-
viduals from different demographic groups and supplementing
the study with structured interviews. Structured interviews help

participants share their ideas and experiences after using the
system, as well as their overview and understanding of the
concepts being explored.

VI. CONCLUSION

This paper presents a new approach to augmenting human
memory using AR and AI technologies. Our AR system
constructs the external augmented representation of objects
located in the indoor environment based on the user’s ex-
perience. The system is comprised of wearable AR and AI
computing modules. The system was validated in a behavioral
study with 26 human participants who completed an experi-
mental task consisting of two activities (i.e., memorization of
object locations in the environment and showing the locations
of the learned objects on the map) under two conditions (i.e.,
with and without our AR system). Evaluation of cognitive
load showed that participants experienced lower cognitive
load when using the system. During the map-pointing activ-
ity, participants made 7.52 times fewer errors on the post-
memorization computer-based test when the system was used.
The usability evaluation of the system yielded a SUS score of
over 80% among the participants. The statistical analysis of
the error rate and the completion time recorded during map-
pointing activity revealed no significant difference between the
genders.
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