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Sleep Stage Classification with Learning from
Evolving Datasets

Huayu Li, Xiwen Chen, Gregory Ditzler, William D.S. Killgore, Stuart F. Quan, Janet Roveda, and Ao Li

Abstract— The precise measurement of sleep stages is
crucial for evaluating sleep quality. Deep learning has re-
cently been utilized for automatic sleep stage classification,
demonstrating exceptional performance. Previous studies
on deep learning-based sleep stage classification assumed
stationary data generation environments, where samples
were drawn from fixed – albeit unknown – unknown distri-
butions and annotated based on predefined criteria. How-
ever, this assumption of a stationary distribution is no
longer valid in real-world applications due to shifts in data
distribution between new and old datasets and changes in
classification tasks. Moreover, the unavailability of histor-
ical data often poses challenges in training deep learning
models. Sleep stage classification faces challenges as-
sociated with evolving data acquisition, changing patient
demographics, and shifting annotation criteria over time.
This paper addresses the classification of sleep stages with
varying data distributions, missing historical datasets, and
changing label granularity for the first time. We proposed
learning strategies for addressing the challenges described
above, as well as constructed benchmarks for evaluating
the proposed learning strategies. The results demonstrate
the effectiveness and performance of the proposed learning
strategies. These findings provide compelling evidence for
the significance and impact of this work. Furthermore, a
comprehensive discussion is presented, highlighting the
limitations of our approach, and proposing several avenues
for future research.

Index Terms— Continual Learning, Deep Learning, Gen-
erative Model, Sleep Stage Classification

I. INTRODUCTION

Sleep is crucial to maintaining physical and mental
health [1]. Monitoring and classifying sleep stages are critical
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for diagnosing sleep disorders and creating personalized treat-
ment plans. Traditionally, trained clinicians classified sleep
stages using electroencephalography (EEG) signals. Unfortu-
nately, this manual process of labeling EEG signals is time-
consuming and prone to inter-rater variability. In recent years,
deep learning models have emerged as a promising approach
for automatic sleep stage classification [2]–[4]. These models
have successfully automatically classified sleep stages using
raw EEG signals. They can accurately classify sleep stages
in real-time and provide valuable insights into sleep patterns
and disorders. Moreover, deep learning models can be trained
on large volumes of data which typically corresponds to better
performance. Despite the significant progress in applying deep
learning models for automatic sleep stage classification, new
challenges have emerged in the dynamic nature of datasets
where the availability of historical data, the updating of
data acquisition process, and the evolution of sleep stage
annotations pose significant obstacles.

Consider the following scenario: A company collaborates
with a hospital and acquires access to a sleep EEG dataset
annotated with sleep/wake stages. The company develops a
mobile application using a deep learning model to classify
asleep and awake stages. The model’s high accuracy provides
valuable insights into patients’ sleep patterns and enables
personalized treatment plans. As time passes, the company
receives new data annotated with five sleep stages from a
different collaborator. The new data are expected to further
the performance. The company recognizes the need to train a
new – more complex – network that can accurately classify
patients’ sleep stages into these five categories. Nevertheless,
the company faces a significant challenge in retaining the
old dataset due to several factors, such as the end of the
collaboration, data privacy laws, and data scarcity. The shift
between the old and new dataset distributions may also lead
the network trained on the new dataset to perform poorly on
the patients’ EEG collected from the old devices. Meanwhile,
the old dataset annotated with only sleep/wake stages would
limit the effective training of the new network even if the old
dataset is obtained.

We formalize the challenges discussed above as sleep stage
classification with learning from evolving datasets. The aim
of this study is to investigate effective learning strategies
and solutions to address the challenges associated with auto-
matic sleep stage classification under varying data distribution,
evolving label granularity, and inaccessibility of historical
data. To begin, we constructed benchmarks using two sleep
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Fig. 1. Illustration of the hierarchy between the sleep stages, show-
casing the relationships among different sleep stages. The hierarchy
diagram visually represents the interconnectedness and hierarchical
structure of the sleep stages.

study datasets to facilitate the examination of this application.
Furthermore, we approach automatic sleep stage classification
from two perspectives based on the accessibility of historical
data, with a particular focus on the critical distribution shift
between old and new datasets. To tackle this distribution shift
challenge, we propose the use of unsupervised domain adap-
tation, which effectively aligns the distributions of the old and
new datasets and addresses the issue of insufficient annotations
in the old dataset. Additionally, we incorporate hierarchy-
aware feature learning [5], which helps to extract informative
features using old annotations. Another significant challenge
is the unavailability of the old dataset. To address this issue,
we propose using generative models [6], [7] to synthesize
additional samples to interleave and leverage samples from
the old data into the new data without actual access to the old
dataset [8].

In summary, we present several significant contributions
as follows: (1) Benchmarks are constructed based on the
widely used sleep study datasets for facilitating further re-
search. The benchmarks highlight the challenges faced by
sleep stage classification with learning from evolving datasets.
(2) Learning strategies with the combination of various tech-
niques are explored to address the challenges associated with
the evolving nature of automatic sleep stage classification.
The experimental results show that we achieved remarkable
results demonstrating the potential for efficient and accurate
sleep stage classification under changing data distributions and
evolving annotations. (3) We delve into unresolved questions
and identify potential directions for future research in auto-
matic sleep stage classification with learning from evolving
datasets. By highlighting the limitations and gaps in current
approaches, the study paves the way for further investigations
and encourages researchers to explore novel methodologies
and solutions.

II. MATERIALS AND BENCHMARKS

Understanding sleep and the different stages of sleep is
crucial for diagnosing and treating sleep disorders. There-
fore, accurate sleep stage classification is critical to provide
personalized treatments for those suffering from sleep disor-
ders. Sleep stages can be broadly classified into two main
types: Rapid Eye Movement (REM) and Non-REM (NREM)

TABLE I
DETAILS OF THE SLEEPEDF AND SHHS DATASET. EACH SAMPLE IS A

30 SECOND EEG SEGMENT.

Dataset SleepEDF SHHS
Subjects 153 329

EEG Channel Fpz-Cz C4-A1
Sampling Rate 100 125

Num of
Each Stage

Wake 65,951 46,319
Sleep 129,528 278,535

NREM 103,693 212,582
N1 21,522 10,304
N2 69,132 142,125
N3 13,039 60,153

REM 25,835 65,953
Total 30s Epochs 195,479 324,854

sleep [9]. NREM sleep can be further segmented into three
stages based on brain activity and muscle tone characteris-
tics. The initial stage of NREM, namely N1, represents the
lightest sleep stage and is characterized by the transition from
wakefulness to sleep. The subsequent stage, N2, is slightly
deeper and typically constitutes around half of the sleep
time in healthy adults. The third stage, N3, corresponds to
the deepest phase of NREM sleep, often called slow-wave
sleep, which is crucial for physical restoration and memory
consolidation [10]. Conversely, REM sleep is characterized by
vivid dreaming, rapid eye movements, and temporary muscle
paralysis. Transitions between sleep stages occur continuously
and cyclically, with each cycle lasting approximately 90 to
110 minutes. Figure 1 shows the hierarchy between different
sleep stages. For constructing the coarse annotation of the old
dataset, we aggregate N1, N2, and N3 stages into the NREM
stage, while combining the NREM and REM stages under the
category of sleep.

The sleep community has collected and released two pub-
licly available datasets that enables research in this domain.
Namely, the Sleep Heart Health Study (SHHS) [11], [12]
and Sleep-EDF Database Expanded (Sleep-EDF) [13], [14]
are used in this work. The details of these datasets are
provided in Table I. Sleep-EDF [14] comprises whole-night
polysomnography (PSG) recordings, including EEG, EOG,
chin EMG, and event markers. Each PSG file has two EEG
channels, Fpz-Cz and Pz-Oz, sampled at 100 Hz. For our
experiments, we used the Fpz-Cz channel as the input, resam-
pling at a rate of 125 Hz to align with the sampling rate of
the SHHS dataset. SHHS [11] is a multi-center cohort study
conducted by the National Heart, Lung, and Blood Institute
to investigate the cardiovascular and other impacts of sleep-
disordered breathing. We chose the C4-A1 EEG channel from
329 PSG records out of 6,441 records as the input to our
model, following the settings used in previous studies [4], [15].
The EEG signals in the SHHS dataset are sampled at 125 Hz.

In this work, we use the SHHS and Sleep-EDF datasets
as benchmarks to evaluate the performance of the proposed
strategies, as shown in Figure 2. Specifically, we designate
the Sleep-EDF and SHHS as the old and new datasets,
respectively. To gradually increase the difficulty level, we
assign two label sets to the Sleep-EDF dataset: Wake/Sleep
and Wake/NREM/REM. Meanwhile, for the SHHS dataset,
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Fig. 2. Illustration of the benchmarks. Our objective is to evaluate
the capability of a new network to classify the old dataset into five
stages using only coarse annotation. Two types of coarse annotation are
employed: Sleep/Wake and Wake/NREM/REM. The distinction between
B1 and B2 lies in the accessibility of the old dataset.

we adopt a label set that encompasses all five stages, namely
Wake/N1/N2/N3/REM. Further, we establish two benchmarks
that account for the absence of the old dataset (i.e., Sleep-
EDF). The first benchmark (B1) allows the new network access
to the old dataset; however, the label sets remain unchanged
and do not undergo relabeling to the five stages. The second
benchmark (B2), which poses a greater challenge, does not
allow the new network to access the old dataset. In this latter
scenario, the new network is expected to train solely on the
old network’s knowledge (e.g., knowledge distillation), or the
generative model trained using the old dataset. To evaluate the
effectiveness of our proposed learning strategies, we use the
new network trained on the SHHS dataset, which incorporates
the more detailed five-stage label set, for performing five-stage
classification on the Sleep-EDF dataset.

III. RELATED WORKS

A. Continual Learning and Deep Generative Replay
Continual learning [16]–[19]is a subfield of machine learn-

ing that focuses on learning over time while avoiding catas-
trophic forgetting [20]. Traditional machine learning ap-
proaches operate under the assumption that the data dis-
tribution remains fixed over time, enabling training on a
static dataset. However, real-world environments often exhibit
evolving or changing data distributions, which requires models
to learn new concepts or adapt to nonstationary environments
when facing new tasks [21]. Meanwhile, continual learning
operates under the assumption that access to previous data is
restricted solely to the current task.

Deep generative replay (DGR) [8] is a continual learning
approach that uses generative models to produce synthetic data
samples from previous tasks. DGR is in contrast to replay
methods which retain a small sample data from prior tasks
[22], [23]. The (synthetic) replay samples train the model
when new task data arrive. The core idea is to use replay to
prevent the network from forgetting data from the prior tasks
without access to the old data. DGR has shown promise to
mitigate catastrophic forgetting. This study examines the use
of DGR to tackle the learning scenario within the context of
sleep stage classification with learning from evolving datasets
for several reasons. Firstly, DGR does not require access to
the old dataset once the model is trained. Secondly, DGR

is independent of the neural network architecture, making it
compatible with new and old networks. Additionally, DGR can
generate synthetic samples before training the new networks,
reducing the training overhead.

B. Hierarchy Aware Feature Learning
Label hierarchies represent valuable resources that can

be used across diverse domains, including biological tax-
onomy [24] and language datasets [25]. These hierarchies
organize labels in a structured manner, effectively capturing
the inherent relationships and semantic dependencies. In recent
years, researchers increasingly recognize label hierarchy’s
potential to enhance classifier performance and substantially
reduce the occurrence of severe errors [5], [26], [27]. One
promising research direction in this context involves the explo-
ration of hierarchy-aware feature learning [5]. This approach
integrates hierarchical information encoded in label hierarchies
into the learning process, enabling classifiers to make semanti-
cally meaningful mistakes while minimizing the overall error.
By considering the relationships between labels at varying lev-
els of granularity, hierarchy-aware feature learning provides a
more nuanced comprehension of the underlying data structure
and facilitates more informed decision-making.

Leveraging label hierarchies in learning tasks offers multiple
advantages. Firstly, it facilitates the identification of shared
characteristics and commonalities among related labels, en-
abling the classifier to generalize knowledge across similar
categories. This is particularly beneficial in scenarios with lim-
ited or expensive labeled data, as the hierarchical relationships
facilitate knowledge transfer from higher-level to lower-level
labels. However, in this work, we use the concept of hierarchy-
aware feature learning to leverage the annotations from the
old datasets. It is important to note that our objective is not
to reduce the severity of mistakes. Rather, we seek to achieve
joint training of neural networks on the new and old datasets
using coarse annotations. Our approach allows the networks
to learn meaningful features from the old EEG signals.

C. Unsupervised Domain Adaptation
Unsupervised Domain Adaptation (UDA) [28]–[30] trans-

fers knowledge from a source to a target domain without
labeled information. These domain adaptation scenarios typ-
ically have limited labeled data in the target domain. The
source and target domains frequently exhibit distinct data
distributions in numerous real-world applications, including
computer vision, natural language processing, and speech
recognition. The primary objective of UDA is to mitigate
the domain discrepancy and facilitate model generalization
on the target domain by harnessing unlabeled data from the
target domain with labeled data from the source domain. In
contrast to supervised learning, which benefits from abundant
labeled data, UDA leverages unsupervised learning to align
the distributions of the source and target domains, thereby
improving the model’s performance on the target domain.

UDA makes an underlying assumption that despite the dis-
parate distributions of the source and target domains, they pos-
sess similarities and structural patterns. UDA leverage shared
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characteristics to learn domain-invariant representations that
capture task-specific information while suppressing domain-
specific variations. In this study, our specific focus lies in
applying UDA to sleep stage classification with EEG data. We
assume that the dissimilarities in data characteristics between
the source and target datasets arise from distinct devices
collecting the data and variations between patient groups.
Additionally, we face the challenge of missing annotations
in the old dataset for the five-stage classification, rendering
supervised learning infeasible. Thus, UDA becomes a viable
approach to adapt a model trained on the source domain to
the target domain, circumventing the need for labeled data in
the target domain.

IV. METHODS

We address the problem of sleep stage classification with
learning from evolving datasets from two perspectives by
considering the access to historical data (B1 and B2). Section
IV-A presents a detailed problem formulation, elucidating our
study’s key challenges and goals. Subsequently, in Section IV-
B, we introduce the concepts and techniques for unsupervised
domain adaptation to align the old and new feature data
distributions. Section IV-C covers the hierarchy aware features
learning, which is used to exploit the coarse annotations of the
old dataset. Finally, in Sections IV-D and IV-E, we present two
generative models to synthesize data in scenarios where access
to the old dataset is limited (B2).

A. Problem Formulation

As described in Section II, we are provided with the old
dataset Dold :=

{
xold
i , yoldi

}N

i=1
comprising N input EEG

signals xold
i , and their corresponding sleep stages yoldi . We

use supervised learning to train the old neural network fold

on Dold by minimizing the cross-entropy loss, ℓ:

fold = argmin
f∈F

EDoldℓ(f(xold
i ), yoldi ), (1)

At a future time, we receive a new dataset Dnew =
{xnew

i , ynewi }Mi=1, where the input EEG signals xnew
i are

sampled from a distribution different from that of xold
i . This

change can be due to changes in collection procedures, such
as a new EEG collection device or patients from different
sub-populations. Moreover, the new sleep stages ynewi are
annotated using different criteria than yoldi . It is worth noting
that some sleep stage annotations remain the same in both the
old and new datasets (e.g., wake). Others are subcategories of
the old annotations (i.e., N1/N2/N3 can be grouped as NREM,
and N1/N2/N3/NREM can be grouped as sleep).

A new model fnew can easily be trained with the new
dataset Dnew; however, such an approach fails to capture
knowledge learned in fold. Our learning setting requires using
the new network to classify the old dataset based on the new
labeling. The challenges associated with the new network with
different labeling than the old dataset are twofold. First, the
distribution shift between the old and new EEG signals will
result in poor generalization performance of fnew evaluated on
Dold. Second, the absence of new annotations for Dold makes

joint training infeasible even with access to the old dataset.
Additionally, we assume that Dold will not be available once
Dnew is received, which makes training fnew even more
challenging.

B. Aligning Feature Distributions via Unsupervised
Domain Adaptation

UDA is a natural approach to address the distribution shift
between datasets when labeled target domain data are scarcely
available, which is the case for the old dataset. UDA methods
adapt the model trained on the source domain (the new dataset)
to the target domain (the old dataset) by aligning the feature
distributions across the two domains. Here, we define the
new and old EEG signal distributions as Xnew and X old,
respectively. Based on these definitions, Ben-David et al. [29]
established an upper bound on the error (i.e., ϵold(f)) of a
classifier f on the target domain by f ’s error on the source
domain (i.e., ϵnew(f)) in addition to several other terms. The
bound is expressed as follows:

ϵold(f) ≤ ϵnew(f) +
1

2
dH∆H(Xnew,X old) + C (2)

where C is a constant term independent of the specific classi-
fier f . The dH∆H term represents the H∆H-distance, which
characterizes the discrepancy between the two classifier’s
decisions over the two domains. Formally, the H∆H-distance
is defined as:

dH∆H(Xnew,X old) =2 sup
f1,f2∈F

|Px∼Xnew [f1(x) ̸= f2(x)]

− Px∼Xold [f1(x) ̸= f2(x)]|. (3)

Minimizing the H∆H-distance in practice can be challenging
and infeasible; however, recent work has developed methods
to approximate this divergence. For example, Ganin and Lem-
pitsky (2015) approximated this divergence with the Domain
Adversarial Neural Network (DANN) framework [31] using
JS-divergence, and it can be formulated as the following
objective:

min
c,f

max
g

EDnewℓ(c ◦ f
′
(xnew

i ), ynewi )+

λE(Xnew,Xold)JSD(g ◦ f
′
(xnew

i ), g ◦ f
′
(xold

j )), (4)

where we slightly change the notations by splitting the network
f into the classifier c and feature extractor f

′
. The term g is a

domain classifier trained to maximize the domain classification
error. Thus encouraging f

′
to learn domain-invariant features.

In [32], f -Domain-Adversarial Learning (namely, fDAL)
enhances the training stability of UDA by minimizing
an f -divergence. The f -divergence between two distribu-
tion functions Ps and Pt is defined as Dϕ(Ps||Pt) =∫
pt(x)ϕ(

ps(x)
pt(x)

)dx, where ps and pt represent the densities
of Ps and Pt, respectively. The f -divergence can also be
reformulated using variational forms [33] as:

Dϕ(Ps||Pt) ≥ sup
T∈T

Ex∈Ps [T (x)]− Ex∈Pt [ϕ
∗(T (x))], (5)

where T : X → dom(ϕ) is an arbitrary measurable function
of the set T , and ϕ∗ is the conjugate function of ϕ. More
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Fig. 3. Illustration of joint training with hierarchy learning. In this
approach, we aggregate the output probabilities of the new sleep stages
based on the hierarchy. This allows us to perform joint training on both
the new and old datasets, leveraging the labels from the old dataset.

specifically, we can incorporate fDAL into our benchmark
using the following min-max objective:

min
c,f ′

max
g

EDnewℓ(c ◦ f
′
(xnew

i ), ynewi )+

EXnew [ℓ̂(g ◦ f
′
(xnew

i ), c ◦ f
′
(xnew

i ))]−
EXold [(ϕ∗ ◦ ℓ̂)(g ◦ f

′
(xold

i ), g ◦ f
′
(xold

i ))]. (6)

We let ℓ̂(c, b) = a(bargmaxc
), where a(.) is a monotonically

increasing function. By incorporating fDAL, the new network
can generate domain-invariant features for both EEGs from the
old and new datasets.

C. Exploit Old Labels with Hierarchy Aware Features
Learning

In continual learning, joint training is commonly used to
establish an upper bound for neural network performance.
Joint training can be considered a near-optimal solution when
the old dataset is fully annotated according to our desired
specifications. Unfortunately, in our case, the old dataset’s
EEG signals have a coarser labeling level than the new dataset,
making vanilla joint training impractical. We can still leverage
the old dataset’s annotations to enhance the new network’s
performance. Given that a significant challenge in our scenario
is the domain shift between the two datasets, the network must
acquire valuable features from the old dataset. Hence, we can
address this requirement by applying Hierarchy Aware Feature
Learning [5].Joint training in our setting can be achieved as
follows. The new network provides output probabilities of the
new annotations to the replay data with coarse sleep stage
labels. This process is illustrated in Figure 3. Specifically, the
cross-entropy loss computed on the old annotations can be de-
fined as l(Hp, y) = −

∑C
i=1(Hp)i log(yi), where p represents

the softmax probability vectors, and H is a matrix utilized to
calculate the summation of fine-to-coarse probabilities. The
construction of matrix H involves setting Hi,j = 1 if the ith
stage in the new annotations falls under the jth stage of the
old annotations; otherwise, Hi,j = 0.

We use knowledge distillation loss to incorporate the old
network’s information using the old network’s soft labels.

Knowledge distillation facilitates knowledge transfer from the
old (i.e., teacher) to the new (i.e., student) network. Specif-
ically, we use the matrix H to aggregate the new network’s
output probabilities and then compute the Kullback-Leibler
(KL) divergence KLτ =

∑
i qi log

pτ
i

qτi
using the old network’s

soft labels with a temperature factor, τ . Then we apply a
softmax activation function to the logits z to get probabilities
to obtain pτi = exp(zi/τ)∑

j exp(zj/τ)
. The final objective for the joint

training with hierarchy is as follows:

min
f

E(Dnew,Dold)[l(Hf(xi), y
old
i )]+

EXold [KLτ (Hf(xi)), fold(xi)]. (7)

In this objective, we optimize the expectation over the
new and old datasets by minimizing the cross entropy loss
l(Hf(xi), y

old
i ) for the old annotations, and the KL divergence

Dτ
KL(Hf(xi)), fold(xi) for the old network’s soft labels. By

jointly considering the new and old datasets, we aim to
improve the new network’s performance by leveraging the
knowledge acquired by the old network, and enhancing the
transfer of information across different sleep stage annotations.

By incorporating UDA and joint training with label hier-
archy, our approach seeks to leverage the benefits of both
techniques. Through UDA, we address the domain shift be-
tween the old and new datasets, allowing the new network to
learn domain-invariant features and adapt to the characteristics
of the target domain. Simultaneously, the joint training with
hierarchy enables the new network to use the information
from the old network, leveraging the fine-to-coarse annotations
to enhance the performance on the coarse sleep stages. This
combination of UDA and joint training with hierarchy provides
a comprehensive framework that addresses the challenges
posed by our sleep-stage classification scenarios. Further, our
approach enables the new network to learn discriminative
features from the new dataset, while benefiting from the
knowledge distilled from the old network. Our approach
enhances the generalization capability of the new network by
jointly optimizing the UDA and hierarchy, thus, facilitating
improved classification accuracy for both the old and new
sleep stages.

D. Generative Samples with Wasserstein GAN

We have discussed the strategies used to address the distri-
bution shift between datasets and the absence of annotations.
However, we assume the old dataset is unavailable in scenario
B2. One potential solution is to use Generative Adversarial
Networks (GANs) to generate realistic synthetic ECG sig-
nals [34]. GANs have demonstrated effectiveness in various
biomarker classification tasks, such as augmenting imbalanced
datasets for electrocardiogram (ECG) classification [35]. A
GAN consists of two neural networks: a generator G and a
discriminator C. These networks collaborate within a game-
theoretic framework to learn the underlying distribution of the
training data and generate new samples that closely resemble
the data distribution. Generally, GANs are trained using the
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following objective:

min
G

max
C

Ex∼Pdata [logC(x)] + Ez∼Pnoise [log(1− C(G(z))].

(8)

In this formulation, x (z) represents real (noise) data samples,
Pdata denotes the distribution of the real data, and Pnoise denotes
the distribution of the noise.

Wasserstein GANs (WGAN) [36] are a variant of the
original GAN that addresses challenges associated with train-
ing. WGAN introduces a different loss function from (8).
Specifically, the Wasserstein distance, also known as the Earth
Mover’s Distance, to measure the dissimilarity between the
generated and real distributions. This modification improves
the stability and reliability of GAN training (e.g., reduction of
mode collapse). The objective of WGAN can be expressed as
follows:

min
G

max
C

Ex∼Pdata [C(x)]− Ez∼Pnoise [C(G(z)]. (9)

Wasserstein GAN with Gradient Penalty (WGAN-GP) [6] is
an enhanced version of WGAN that incorporates gradient
penalty regularization (GP) to enforce the Lipschitz continuity
constraint on the discriminator. This modification improves
training stability and prevents mode collapse by controlling
the discriminator’s power. The following equation represents
the objective function of WGAN-GP:

min
G

max
C

Ex∼Pdata [C(x)]− Ez∼Pnoise [C(G(z)]+

λEx̂∼P interp[(||∇x̂C(x̂)||2 − 1)2] (10)

where λ is a hyperparameter to control the strength of the
gradient penalty. Here, x̂ represents a point along the straight
line connecting a real sample and a sample generated from
Pinterp. While the original WGAN-GP is an unconditional
model with non-conditional probability distributions in the loss
function, we aim to generate synthetic samples conditioned on
labels. To achieve this, we introduce random synthetic labels
y′ and denote the true labels of real samples as y. Accordingly,
ŷ represents a point along the straight line connecting the
real and synthetic labels, sampled from Pinterp. The conditional
version of WGAN-GP is trained using the following objective:

min
G

max
C

Ex∼Pdata [C(x|y)]− Ez∼Pnoise [C(G(z)|y
′
)]+

λEx̂∼P interp[(||∇x̂C(x̂|ŷ)||2 − 1)2], (11)

We can generate synthetic samples conditioned on specific
classes by introducing conditional labels y and y′. Thus,
improving the applicability of the WGAN-GP framework to
our task. This modification allows us to generate ECG signals
with label-specific characteristics, facilitating more targeted
analysis and classification tasks.

E. Generative Samples with Denoising Diffusion
Probabilistic Models

In the field of deep generative models, the Denoising
Diffusion Probabilistic Model (DDPM) [7] belongs to a cate-
gory of models that focus on converting noise into realistic
data samples by progressively eliminating noise through a

denoising procedure. In this approach, the training data are
iteratively corrupted by introducing Gaussian noise, and the
model is trained to reverse this process and restore the original
data. As a result, a well-trained DDPM can generate novel data
by applying a denoising process to randomly generated noise.

Specifically, DDPM encompasses two main processes: the
forward process, also known as the diffusion process, where
data is progressively diffused to a well-behaved distribution by
adding noise, and the reverse process, which transforms noise
back into a sample from the target distribution. In the forward
process, a distribution denoted as q gradually introduces noise
to a given data point x0 ∼ q(x0). DDPM implements the
diffusion process using a fixed Markov Chain with conditional
Gaussian translation at each step, defined as follows:

q (x1:T |x0) :=

T∏
t=1

q (xt|xt−1) , (12)

q (xt|xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
, (13)

where β1, . . . , βT represents a variance schedule, and N
denotes the Gaussian distribution with parameters µ and Σ. In
contrast, the reverse process aims to recover the initial data
point x0 from a given state xt by reversing the diffusion
process. Starting with pure Gaussian noise sampled from
p(xT ) := N (xT ,0, I), the reverse process is defined by the
following Markov chain:

pθ (x0:T ) := p (xT )

T∏
t=1

pθ (xt−1|xt) , xT ∼ N (0, I) (14)

pθ (xt−1|xt) := N (xt−1;µθ (xt, t) , σθ (xt, t) I) . (15)

In this process, the time-dependent parameters of the Gaussian
transitions are learned. In the context of DDPM, a specific
parameterization for pθ (xt−1|xt) is proposed:

µθ (xt, t) =
1

αt

(
xt −

βt√
1− αt

ϵθ (xt, t)

)
, (16)

σθ (xt, t) =

√
β̃t, where β̃t =

{
1−αt−1

1−αt
βt t > 1

β1 t = 1
(17)

where ϵθ(·, ·) is a learnable denoising function that estimates
the noise vector ϵ added to a noisy input xt. The parameteri-
zation leads to an alternative loss function:

L(θ) := Et,x0,ϵ

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2] , (18)

where ᾱt represents the schedule of values for αt.
Given the synthetic labels y′, the conditional version of

DDPM can be obtained by estimating the true conditional
data distribution q(x0|y′) through modeling the conditional
distribution pθ(x0|y′). Consequently, the reverse process is
extended as follows:

pθ

(
x0:T |y

′
)
:= p (xT )

T∏
t=1

pθ

(
xt−1|xt, y

′
)
, xT ∼ N (0, I),

pθ

(
xt−1|xt, y

′
)
:= N

(
xt−1;µθ

(
xt, t|y

′
)
, σθ

(
xt, t|y

′
)
I
)
.

To accommodate the conditional aspect, a conditional denois-
ing function ϵθ is introduced, which is conditioned on y′. This
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TABLE II
ARCHITECTURE OF WGAN-GP. THE CONFIGURATION OF CONV1D IS

SPECIFIED BY THE FOLLOWING PARAMETERS: OUTPUT CHANNEL,
KERNEL SIZE, STRIDE, AND PADDING.

Generator Discriminator

Embedding
5→28

Randn
1×100

Embedding
5→100
Linear
3750

EEG signal
1×3750

Input size: 1×128 Input size: 2×3750
Linear 128

BatchNorm,ReLU
Conv1D 32,4,2,0

InstanceNorm,ReLU
Linear 256

BatchNorm,ReLU
Conv1D 64,4,2,0

InstanceNorm,ReLU
Linear 512

BatchNorm,ReLU
Conv1D 128,4,2,0

InstanceNorm,ReLU
Linear 3750

BatchNorm,ReLU
Conv1D 256,4,2,0

InstanceNorm,ReLU
Conv1D 32,4,1,2
BatchNorm,ReLU

Conv1D 512,4,2,0
InstanceNorm,ReLU

Conv1D 64,4,1,2
BatchNorm,ReLU

Conv1D 1,1,1,0
InstanceNorm,ReLU

Conv1D 128,4,1,2
BatchNorm,ReLU
Conv1D 1,4,1,0

BatchNorm,ReLU

allows for the definition of the conditional loss function as
follows:

Ex0,ᾱ,ϵ

[∥∥∥ϵ− ϵθ

(√
ᾱx0 +

√
1− ᾱϵ, y

′
, ᾱ

)∥∥∥2] . (19)

In our case, DDPM offers several advantages. DDPM can
generate new conditional data samples by leveraging the
learned denoising process and the synthetic labels y′. DDPM
effectively captures the conditional dependencies between the
generated data and the corresponding labels by modeling the
conditional distribution pθ(x0|y′). Consequently, it generates
realistic and diverse samples that align with specific label
conditions. Further, the conditional loss function ensures that
the generated samples exhibit similarity to the noise vec-
tor while conforming to the conditioning information. Thus,
DDPM provides a powerful framework for conditional data
generation, which makes it highly suitable for our particular
application.

V. EXPERIMENTS

A. Experimental Configurations
This study used two neural networks: ResNet [37] and

AttnSleep [4] as the old and new networks, respectively.
AttnSleep was chosen for its architecture, which incorporates
transformer layers [38] to effectively capture long-range de-
pendencies. Both neural networks were trained with a batch
size of 128 using the Adam optimizer [39]. The initial learning
rate was set to 1 × 10−3 and then reduced to 1 × 10−4

after ten epochs. To mitigate overfitting, a weight decay
of 1 × 10−3 was applied within Adam. The class-aware
cross-entropy loss was used to train both networks on their
respective datasets [4]. This loss function, denoted as ℓ(p, q) =∑

i wkqi log pi, includes precalculated weights wk for each
class k. These weights are crucial to address class imbalance
and ensure balanced learning during training. We introduced
an additional batch of size 128, sampled from either the old
or synthetic datasets, to train the new network. This approach

Fig. 4. UNet backbone architecture for DDPM. The main structure (a) is
composed of downsampling modules (c) and upsampling modules (d),
which include the double convolution module (b).

allowed us to evaluate the new network’s performance under
different conditions. The central learning objective is a linear
combination of Equations 6 and 7. We adopted the same
configuration of fDAL as described in the original paper [32],
by using the Pearson χ2 function and its conjugate. The
generator and discriminator architectures in the WGAN are
reported in Table II. The training procedure proposed by [40]
is used to train the WGAN. Additionally, the architecture of
the UNet Backbone [41] used in the DDPM (see Figure 4). The
training procedures used in our previous work [42] for ECG
reconstruction were replicated. All experiments were run on an
NVIDIA RTX 3090 GPU. To ensure fair comparisons, fixed
random seeds were used throughout the experiments. Further,
we performed five-fold cross-validation and report the average
performance metric.

B. Evaluation Metrics

We use multiple figures of merit to assess performance.
These metrics include per-class F1-score (F1), accuracy,
the area under the Receiver Operating Characteristic curve
(AUROC), and the area under the Precision-Recall curve
(AUPRC). Each metric provides valuable insights into the
strengths and limitations of the model [43]. We denote true
positive predictions as TP, true negative predictions as TN,
false positive predictions as FP, and false negative predictions
as FN. Precision (P) is calculated as TP

TP+FP , while Recall (R)
is calculated as TP

TP+FN .
The F1 Score, a widely recognized metric for binary classi-

fication tasks, balances precision and recall, and is calculated
as F1 = 2× P×R

P+R . This score is the harmonic mean of precision
and recall. We compute the F1 score for each sleep stage and
then average F1 score across all stages (MF1). The Accuracy
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is another commonly used metric, representing the proportion
of correct predictions out of the total number of predictions.
The accuracy is calculated as Acc = TP+TN

TP+TN+FP+FN , providing
a high-level assessment of the model’s correctness. Further, we
also use AUROC, which assesses performance at distinguish-
ing between positive and negative instances across various
classification thresholds. AUROC is computed by integrating
the Receiver Operating Characteristic (ROC) curve. In sce-
narios with class imbalance, such as sleep stage classification,
AUPRC holds significance. It considers the precision and recall
at different thresholds, comprehensively evaluating the classi-
fier’s performance. AUPRC is calculated by integrating the
precision-recall curve. By using this diverse set of evaluation
metrics, we gain an understanding of our model’s performance
and suitability for automatic sleep stage classification.

C. Main results

We evaluate the five-stage classification performance of
AttnSleep on Sleep-EDF following the B1 and B2 settings
defined in Section II. Table III shows the main results on
the two benchmarks and two baselines. We first compare the
performance of joint training and training on only SHHS. Joint
training can be considered a loose upper bound and training on
SHHS only can be considered a lower bound. The lower bound
baseline is designed to establish a performance threshold
that represents the minimal achievable results. This baseline
typically involves naı̈ve approaches that do not incorporate
advanced techniques or use all available resources. When
comparing our method against the lower bound, we can assess
how much our approach surpasses or outperforms the minimal
expectations. In contrast, the upper bound represents the ideal
or optimal performance. By comparing our method against the
upper bound, we can identify the gaps or limitations of our
approach and determine areas for further improvement.

Our proposed strategy in B1 surpasses the lower bound
in per-class F1 without the need to manually relabel the old
data set, achieving gains ranging from 0.02 to 0.1 when the
old dataset has a sleep/wake annotation and gains of 0.05
to 0.2 when it has wake/REM/NREM annotation (see Table
III). This result demonstrates the advantages of our approach.
Unsurprisingly, the results on B1 yield better performance than
those obtained on B2. For example, if the old dataset is labeled
with sleep/wake, using B1 can obtain a gain of 0.12 and
0.04 MF1 over WGAN-GP and DDPM using B2, respectively.
Further, if the old dataset is labeled with wake/REM/NREM
then using B1 can achieve 0.05 and 0.03 AUPRC gains over
WGAN-GP and DDPM on B2, respectively. These results are
expected since B1 allows the new network to be trained on
the old dataset.

However, accessing the old data is often not feasible or
costly due to several concerns; therefore, B2 is more chal-
lenging but valuable for such applications. Fortunately, our
proposed strategy can still achieve reasonable gains over
SHHS by using the generative model to synthesize the old
data. We observe in this benchmark that DDPM is a more
accurate network than WGAN-GP (see Table III), and DDPM
achieves a 0.02 and 0.08 MF1 gain over SHHS for the

old dataset labeled with sleep/wake and wake/REM/NREM,
respectively. Moreover, if we look closer into the class-wise
evaluation, DDPM obtains similar performance and has 0.01
to 0.02 per-class F1 drops over B1 on class Wake and REM
if the old dataset has wake/REM/NREM annotation. These
results demonstrate that even with no or limited access to old
data, our approach still provides benefits for hierarchy-aware
feature learning on the new task while preserving information
from the old dataset.

D. Ablation study
An ablation study was conducted on B1 using the

wake/REM/NREM old label set to investigate the learning
strategies’ impact. We select five strategies for comparison:
S1 represents the proposed integrated strategies of UDA
(Section IV-B) and hierarchy joint training (Section IV-C), S2
corresponds to hierarchy joint training, S3 refers to only using
UDA, S4 represents hierarchy joint training without a KD
loss, and S5 represents the proposed integrated strategies (S1)
without KD loss. The results for each strategy are presented
in Table IV. These results show that replacing or omitting
different aspects of our proposed strategy in S2-S5 leads to a
drop in class-wise and overall performance. For example, the
experiments with S2-S5 result in an MF1 degradation ranging
from 0.02 to 0.2. The impact becomes more pronounced in
the class-wise evaluation, especially for class N1. In the N1
class, S1 achieves per-class F1 scores that are multiple factors
larger than those obtained using S2, S5, and S4 (i.e., 2x-7x
improvement). These results reaffirm the need for our design
to address the classification challenges presented by changing
data distributions.

VI. DISCUSSION AND LIMITATIONS

This paper proposes an integrated learning strategy to ad-
dress the challenge of sleep stage classification with learning
from evolving datasets. This strategy offers a preliminary
solution to enable machine learning models to adapt and
learn effectively from datasets with evolving label sets. Ex-
perimental results demonstrate that integrating these learning
strategies achieves classification performance comparable to
joint training with relabeled old datasets. Additionally, the
ablation study offers insights into the individual contributions
of different learning strategies. By comparing the performance
of various strategies, the study underscores that integrating
these strategies, as proposed in this work, yields superior
performance compared to individual or alternative approaches.
Further, incorporating deep generative models such as WGAN-
GP and DDPM addresses the practical constraints related to
access to old datasets. Leveraging these generative models,
the classifier can learn from historical data while adapting
to current circumstances, providing a valuable solution for
scenarios where direct access to the old data is unfeasible.

This study highlights the need for sleep stage classification
algorithms with evolving label sets, changing data distribu-
tions, and inaccessible historical data. For example, in sleep
stage scoring, the criteria for identifying each sleep stage
evolve over time [44]. Moreover, classification tasks undergo
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TABLE III
MAIN RESULTS ON THE TWO BENCHMARKS.

Per-class F1 Overall Metrics
Wake N1 N2 N3 REM Accuracy AUROC AUPRC MF1

SHHS (Baseline) 0.8473 0.1738 0.6468 0.5716 0.4923 66.20 0.7727 0.6371 0.6386
Joint training (Upper Bound) 0.8971 0.4282 0.8100 0.7672 0.7060 76.92 0.8221 0.7577 0.7610

Benchmarks Generator Old Labels

B1 - sleep/wake 0.8948 0.1980 0.7215 0.6781 0.5804 71.28 0.7937 0.6944 0.7060
wake/REM/NREM 0.9070 0.2381 0.7686 0.7119 0.6977 75.88 0.8069 0.7315 0.7580

B2
WGAN-GP sleep/wake 0.8273 0.1588 0.5768 0.4778 0.4194 58.83 0.7399 0.6148 0.5855

wake/REM/NREM 0.8729 0.1648 0.6901 0.5929 0.6223 69.03 0.7812 0.6800 0.6916

DDPM sleep/wake 0.8617 0.2141 0.6921 0.6582 0.4659 67.12 0.7719 0.6568 0.6661
wake/REM/NREM 0.8990 0.2158 0.7231 0.6142 0.6772 72.25 0.7957 0.7033 0.7227

TABLE IV
ABLATION STUDY ON THE INTEGRATION OF PROPOSED LEARNING

STRATEGIES.

S1 S2 S3 S4 S5
Wake 0.9070 0.9042 0.5777 0.8994 0.8936

N1 0.2381 0.0793 0.1781 0.0299 0.1075
N2 0.7686 0.5995 0.6328 0.6152 0.7579
N3 0.7119 0.5133 0.6713 0.5166 0.6955

Per-class
F1

REM 0.6977 0.6916 0.4231 0.6774 0.6668
Accuracy 75.88 66.73 55.47 66.92 73.89
AUROC 0.8069 0.8029 0.7270 0.7962 0.8019
AUPRC 0.7315 0.7159 0.5852 0.6982 0.7123

Overall
Metrics

MF1 0.7580 0.6663 0.5481 0.6690 0.7352

adaptations to meet the specific demands of diverse applica-
tions [45]. Consequently, there is an urgent need to develop
algorithms capable of effectively handling cross-datasets with
evolving label sets. Therefore, accommodating the dynamics
of real-world scenarios. In addition, domain changes between
old and new datasets frequently occur due to advancements
in ambulatory diagnosis equipment and variations in patient
demographics. In particular, the inaccessibility of old datasets
is frequently due to privacy concerns, policy restrictions, and
the discontinuation of collaborations [46]. Consequently, we
introduce an integrated strategy to tackle the challenge of sleep
stage classification under changing dataset shifts, and offer a
solution to address this issue.

Further, the significance of investigating learning from
evolving datasets goes beyond the specific application do-
main. It serves as a representative example of the broader
challenges faced in various fields where data distributions
and classification requirements undergo temporal changes.
In the rapidly evolving landscape of today’s world, datasets
collected from various sources exhibit inherent dynamics due
to technological advancements, evolving user behaviors, and
shifting environmental conditions. These dynamics introduce
significant complexities that traditional static classification ap-
proaches are ill-equipped to address. Consequently, there is an
increasing demand for methodologies and algorithms that can
adapt to the changing nature of data and classification contexts.
Hence, a reliable system can effectively handle nonstationary
data distributions, adapt to evolving classification tasks, and
provide accurate and up-to-date insights in dynamic real-world
scenarios. The implications of such advancements are far-
reaching, impacting fields such as healthcare, finance, social
sciences, and many others, where the ability to classify and
interpret dynamic data is critical for informed decision-making
and understanding complex phenomena.

However, several open questions remain that need to be
addressed in future research. Firstly, the experimental findings
show low performance for the N1 stage. This outcome begs
the need to investigate methods for improving the accuracy
on specific indistinguishable categories. Further exploration
is needed to understand the factors contributing to lower
performances (especially the performances on the N1 stage).
Additionally, the results indicate that generative methods per-
form inferiorly compared to using the “real” old dataset. This
result raises the question of improving the synthesis of data
from generative models to better reflect the distributions of
real old data better. Exploring advanced techniques, such as
adversarial training or incorporating additional constraints,
may improve the performance of generative methods in the
context of sleep stage classification. Moreover, this study
focuses on the challenges of changing data distributions in
sleep stage classification. Other related classification tasks
in the healthcare domain face similar challenges. Investigat-
ing the proposed learning strategies for different healthcare
domains, such as disease diagnosis or patient monitoring,
presents an interesting future direction. These studies would
involve adapting the strategies to the specific characteristics of
different datasets and classification tasks, and evaluating their
effectiveness in improving classification performance in those
domains.

VII. CONCLUSION

This paper investigates the challenges of sleep stage classi-
fication with learning from evolving datasets caused by the
dynamic nature of the datasets. We construct benchmarks
using two widely employed sleep datasets to simulate learning
scenarios and assess the performance of the algorithms. We
tackle these challenges by integrating multiple techniques. By
leveraging a combination of UDA, Hierarchy-Aware Feature
Learning, and deep generative models, we achieve exceptional
results, highlighting the potential for efficient and precise
sleep stage classification amidst shifting data distributions,
varying label granularity, and missing historical datasets. In
summary, this study significantly advances the field of sleep
stage classification by creating benchmarks and proposing
the learning strategies. Furthermore, the concept of learning
from evolving datasets, akin to that employed in sleep stage
classification, has the potential for broader application across
various healthcare domains. This research paves the way for
future explorations in sleep stage classification and other
classification tasks confronted with comparable challenges.
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