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Abstract—During the COVID-19 pandemic, there was a no-
table decrease in student learning rates across public school
systems in the United States, undoing years of progress. This
research examines nine publicly accessible data outlets within a
data science framework to explore their potential to understand
and mitigate factors contributing to learning loss. The data
was sourced from various entities, including the Census Bureau
2010, USAFACTS, Texas Department of State Health Services
(DSHS), the National Center for Education Statistics (CCD),
U.S. Bureau of Labor Statistics (LAUS), and three sources from
the Texas Education Agency (STAAR, TEA, ADA, ESSER).
We present an end-to-end large-scale educational data model-
ing pipeline that integrates, cleans, and implements automated
attribute importance analysis for deriving meaningful insights
from educational data. We aim to address several key research
inquiries: i) Do students from low-income backgrounds and
minority groups exhibit heightened learning loss? ii) How does
learning loss vary across different grade levels? iii) What impact
does the decision to reopen schools or school districts have on
student learning loss? iv) Is there a relationship between the
mode of instruction (hybrid, remote, in-person) and learning
loss? v) Is the school or district attendance inversely associated
with learning loss? vi) Does the local or regional infection rate
correlate with increased learning loss? vii) How does the local
unemployment rate influence learning losses? Our investigation
demonstrated the superior performance of gradient-boosting
algorithms, particularly XGBoost and CatBoost, in handling
missing values. During this period, the mode of instruction and
prior score emerged as the primary resilience factors, alongside
low income and grade level, which were found to be the most
influential factors in predicting learning loss for both math
and reading. We demonstrate a novel data-driven approach to
discover insights from an extensive collection of heterogeneous
public data sources and offer an actionable understanding to
policymakers to identify learning-loss tendencies and prevent
them in public schools.

Index Terms—Algorithms, Boosting, Data augmentation, Di-
mensionality reduction, Random Forest

I. INTRODUCTION

The COVID-19 pandemic has brought unprecedented chal-
lenges to the field of education, with significant disruptions
to traditional learning environments and practices. Learning
loss, within the context of education, can be defined as the
depletion or regression of previously attained or expected
knowledge and competencies. COVID-19 also had an impact
on teacher preparation [1]. A study indicated how COVID-
19 has led many veteran teachers to consider early retirement
and novice teachers to consider alternative professions [2]. The
COVID-19 pandemic also forced many schools to close across
the world [2]. According to the latest UNESCO statistics,
43 million students were affected by school closures and
nationwide closures [3]. Even in high-income countries like
the Netherlands and Belgium, learning loss ranged from 0.08

to 0.29 [4]. In a recent publication, it was highlighted that the
global consequences of a five-month closure of schools could
result in learning losses equating to less than $10 trillion.[3].
In the U.S., school district reopening decisions are difficult
for policymakers since there is no consensus on the impact of
school reopening on the spread of COVID-19 [5]. The learning
loss was not uniform across states, as documented for Virginia,
Maryland, Ohio, and Connecticut in [6]. reports from two
states, Rhode Island and North Carolina, have been released,
providing estimations of the learning losses and recovery
observed within their respective jurisdictions [7]. Additionally,
the Texas Education Agency has issued a report detailing the
loss of learning (TEA) experienced in the state [8].

A definitive explanation for the factors contributing to the
learning recovery in the aforementioned states remains elusive.
Over the coming years, extending potentially over decades,
educational research is likely to focus extensively on crafting
methodologies aimed at alleviating and addressing the learning
losses attributable to the COVID-19 pandemic. In the U.S.,
researchers have disagreed on the impact of school reopening
during the spread of COVID-19 [5]. This complexity posed
challenges for policymakers in determining the appropriate
timing for reopening schools, resulting in varying approaches
across states, counties, and school districts [9]. Across the
board, the learning losses have not been uniform [10]. The
Texas Education Agency published a report documenting the
4% Loss in reading and 15% Loss in math on the STAAR
exam and how the negative impact of COVID-19 erased years
of improvement in reading and math [11]. This paper is a
comprehensive investigation that leverages a diverse array of
public data sources to shed light on the complex dynamics
underlying learning loss during and after the COVID-19 pan-
demic. We aim to address several key research inquiries: i) Do
students from low-income backgrounds and minority groups
exhibit heightened learning loss? ii) How does learning loss
vary across different grade levels? iii) What impact does the
decision to reopen schools or school districts have on student
learning loss? iv) Is there a relationship between the mode
of instruction (hybrid, remote, in-person) and learning loss?
v) Is the school or district attendance inversely associated
with learning loss? vi) Does the local or regional infection
rate correlate with increased learning loss? vii) How does
the local unemployment rate influence learning losses? By
elucidating these questions through our approach, we endeavor
to pinpoint resilient factors contributing to learning recovery
within Texas public schools. Our approach is novel in that it
integrates data science methodologies with educational policy
analysis, offering a data-driven perspective to inform decision-
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making processes. By aggregating and analyzing data from
nine sources, we aim to identify what specific factors were
most important for the schools to experience a significant
learning loss. Central to our investigation is the development
of an end-to-end educational data science pipeline. Through
this pipeline, we seek to uncover patterns, trends, and rela-
tionships within the data that can inform policy interventions
and educational practices. Specifically, we employ automated
attribute importance analysis techniques to understand various
parameters, including consensus information, demographics of
public school districts, instructional modalities, socioeconomic
indicators such as income levels, urban or rural settings,
student attendance rates, county infection rates, and unem-
ployment statistics, among numerous other factors spanning
the years 2019, 2021, and 2022.

The data-driven findings show that the most resilient factor
influencing learning loss in the district is how early or late the
students go back to in-person learning. The size and location
of a district, along with the amount of money in the area
and the Elementary and Secondary School Emergency Relief
Fund received, play critical roles in the recovery process. The
results identify the significance of various factors in promot-
ing learning recovery in math and Reading, highlighting the
importance of considering a district’s economic status, size,
locale, demographics, and funding.

II. RELATED WORK
In the introduction, we reviewed the related work from qual-

itative and reporting perspectives. In this section, we will focus
on (1) quantitative research and machine learning tools to gain
insight from the data on the relationship with the outcome
without overfitting the features to the data or (2) the directions
for selecting machine learning models for predicting learning
loss with tabular data. The most popular machine learning
(ML) techniques (logistic regression, support vector machines,
Bayesian belief network, decision trees, and neural network)
for data in the wild generally offer an excellent classification
accuracy above 70% for simple classification tasks [12]. From
a data science perspective, it’s critical to refine the selection of
modeling approaches. It has been seen that excessive reliance
on feature engineering may result in less-than-optimal out-
comes when translating domain-specific data. Further analysis
of 30 chosen articles indicated that deep neural networks
(DNN), decision trees, Support Vector Machines (SVM), and
K-Nearest Neighbor (KNN) are favored methods for predicting
student academic performance [13]. Demographic, academic,
familial/personal, and internal assessment factors emerged as
the most commonly utilized features for predicting student
performance across various metrics such as classroom per-
formance, grade levels, standardized tests performance, etc.
[14]. A large-scale data science study examined the Big Fish
Little Pond Effect (BFLPE), which describes how individuals
often feel better about themselves when they excel in a less
competitive environment rather than being average in a highly
competitive one, across 56 countries for fourth-grade math
and 46 countries for eighth-grade math. This analysis drew on
extensive data from the Trends in International Mathematics
and Science Study (TIMSS) and employed a straightforward
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Fig. 1: The noisy tabular data analysis pipeline designed for
education data analysis

statistical approach [15]. Recent research indicates that state-
of-the-art machine learning techniques for tabular data surpass
existing methods and exhibit less sensitivity to input bias and
noise compared to Deep Neural Networks (DNN) [16].

State-of-the-art gradient-boosted decision trees (GBDT)
models such as XGBoost [17], LightGBM [18], and Cat-
Boost [19] are the most popular models of choice when it
comes to tabular data. In recent years, deep learning models
have emerged as state-of-the-art techniques on heterogeneous
tabular data: TabNet [20], DNF-Net [21], Neural Oblivious
Decision Ensembles (NODE) [22], and TabNN [23]. Although
papers have proposed that these deep learning algorithms
outperform the GBDT models, there is no consensus that
deep learning exceeds GBDT on tabular data because standard
benchmarks have been absent. There is also a shortage of
open-source implementations, libraries, and their correspond-
ing APIs for deep learning [24], [25]. Recent studies provide
competitive benchmarks comparing GBDT and deep learning
models on multiple tabular data sets [24]; however, all of
these benchmarks indicate that there is no dominant winner,
and GBDT models still outperform deep learning in general.
The studies suggest developing tabular-specific deep learning
models such that tabular data modalities, spatial and irregu-
lar data due to high-cardinality categorical features, missing
values, and uninformative features cannot guarantee the same
prediction power as deep learning obtains from homogeneous
data, including images, audio, or text [26].

III. METHODOLOGY
The study presents an end-to-end educational data science

pipeline tailored to handling tabular data. Its effectiveness is
demonstrated through predicting learning deficiencies in math
and reading scores among students in Texas public schools.
The study extends its analysis to include the 2021-2022 data,
repeating the experiments, thereby affirming its relevance and
utility in educational data analysis.

A. Attribute Importance Scoring

This section introduces an innovative approach to identify-
ing critical features from a vast array of potential factors. The
study contrasts three distinct techniques for feature selection in
data analysis: filter methods, embedded methods, and wrapper
methods. Several algorithms for automated feature selection
are evaluated to assess the effectiveness of these techniques,
along with a collection of interpretative methods for analyzing
feature importance. These measures aim to mitigate issues
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associated with "Garbage In, Garbage Out (GIGO)" and trivial
modeling. Heterogeneous data tends to have overlapping infor-
mation mixed with numerical and categorical data. Utilizing
filter methods to distill correlated features, our objective is to
construct a quasi-orthonormal attribute space to observe any
correlation between two features or a feature and our label.
We wanted to avoid artificial weighting of the features in
the modeling step, so we utilized this correlation filtering in
this section to aggregate linearly related features in our data
set into one attribute. To this end, we have expanded several
categorical features to multiple binary features as we found
that numerous separate categories capture highly overlapping
data. The Pearson correlation coefficient ρ measures the linear
relationship between two normally distributed variables and is
defined in Equation 1:

ρ =
cov(X,Y )

σXσY
(1)

The cov(X,Y ) represents the covariance between variables X
and Y , while σX and σY are the standard deviations of X and
Y respectively. Pearson’s correlation coefficient estimate r,
also known as a "correlation coefficient," for attribute feature
vectors x = (x1, . . . , xn) with mean x̄ and y = (y1, . . . , yn)
with mean ȳ, is obtained via a Least-Squares fit, as defined in
Equation 2.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√

(yi − ȳ)2
(2)

The x̄ and ȳ represent the means of vectors x and y respec-
tively. A value of 1 represents a perfect positive relationship, -1
is a perfect negative relationship, and 0 indicates the absence
of a relationship between variables. We use features with high
correlation coefficients to aggregate them into one attribute, as
they are linearly dependent on each other. Eventually, we could
keep one attribute, the most highly correlated to our label,
of those overlapping features in our analysis. Then, we can
combine all binary dummy-coded variables from related cate-
gories as a set in variable selection. This approach thus reduces
an attribute dimension that provides better interpretability of
our attribute set and its importance. To identify and assess
the features influencing our prediction models, we examine
ten distinct approaches drawn from the three aforementioned
methods (filter methods, embedded methods, and wrapper
methods). Each technique aims to select feature sets with min-
imal redundancy and maximal relevance, resulting in either a
chosen set of features or a score indicating feature importance.
Permutation Feature Importance (PFI) is a technique that
replaces the values of a feature with noise and measures the
change in performance metrics (such as accuracy) between
the baseline and permuted data set. This method overcomes
some limitations of impurity-based feature importance but can
also be biased by the correlation between features[27]. Our
ultimate feature set comprises attributes exhibiting positive
mean importance as determined by the PFI, identifying crucial
features. We utilize Random Forests PFI RF and Logistic
Regression with Ridge Regularization PFI LR, both of which
assign non-zero scores to all features.

Recursive Feature Elimination (RFE) is a method of training
a model on a full set of features in the data set, eliminating
the features with the smallest coefficients. This process iterates
until the 10-fold cross-validation score of the models with
Random Forest RFE RF and Logistic Regression with Ridge
Regularization RFE LR on the training data shows a decrease.
The final scores are attribute rankings where 1 indicates the
most relevant features [28].
Logistic Regression with Filtering and Regularization is a
technique that uses L1 LR Lasso or L1 and L2 ElasticNet
penalty terms to shrink the coefficients during training. This
reduces the coefficients of some features to zero for both,
and the remaining non-zero coefficients are considered useful
information for prediction.
Feature Importance Random Forest (FI RF) is a method
that leverages the Random Forests machine learning algorithm
to determine the importance of each feature. This importance
is measured using either the Gini or the mean decrease impu-
rity. A threshold of the 50th percentile of feature importance
is used to determine which features should be included in the
final set.
Variance Threshold is a straightforward method to eliminate
features by removing features with low variance in the training
data set[29]. In this work, the threshold used is 0.8*(1-0.8),
meaning that features with 80% similar values in the training
data set are removed. The final set of features consists of the
k features with the highest variance. Variance Threshold, SFS
LR, and SFS KNN provide a binary selection of features.
Sequential Feature Selection (SFS) searches for the optimal
set of features by greedily evaluating all possible combinations
of features. The method works by adding one feature at a time
and assessing each subset based on the 5-fold cross-validation
score of Logistic Regression with Ridge Regression SFS RR
and SFS KNN models. In total, we obtain ten diverse results,
comprising binary, numerical, and rank scores. We suggest
multiple fusion scoring mechanisms for end-users to consider,
as detailed in Algorithm 1. First, we look into five approaches
that filter out features and rank the features by the binary sum
outputs. Next, we take the methods that provide scores for
all features and rank the attribute importance based on the
sum of absolute scores. We transform the scores into rankings
and combine them with the filtering and ranking methods to
develop the final feature, which is importance ranking.

B. Prediction Modeling
The second question addressed in this study pertains to de-

termining whether the public data collected from web sources
is sufficient for reliably predicting school district learning
performance during the COVID-19 years. Thus, we create
five basic baseline models: Logistic Regression with Ridge
Regularization, Support Vector Machines (SVM), K-Nearest
Neighbor (KNN) suitable for nonlinear and non-separable
data, Random Forests, and Gradient Boosting. Additionally,
we explore four advanced Gradient Boosting algorithms: XG-
Boost, LightGBM, CatBoost, and HistGradientBoosting. Since
the data aligns with the attributes of tabular data, we opt for
gradient boosting methodologies due to their demonstrated
robustness in handling diverse tabular datasets [24].
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Algorithm 1: Fusion Scoring Algorithm
Input : Feature Selection Importance Scores(binary,

numerical)
Output: Final Fusion Importance Ranking

1 Initialize BinarySumRankings;
2 Initialize AbsoluteScoreRankings;
3 foreach result in Results do
4 if result is binary then
5 Apply filtering mechanism to extract relevant

features;
6 Calculate the binary sum output for these

features;
7 Rank the features based on the binary sum

outputs;
8 Append the ranked features to

BinarySumRankings;
9 else

10 Apply methods to provide scores for all
features;

11 Calculate the absolute scores for each feature;
12 Rank the attribute importance based on the sum

of absolute scores;
13 Append the ranked attribute importance to

AbsoluteScoreRankings;
14 end
15 end
16 Transform the scores from BinarySumRankings and

AbsoluteScoreRankings into rankings;
17 Combine the rankings derived from both

methodologies;
18 Merge the filtering and ranking methods to generate

the FinalFeatureImportanceRanking;
19 return FinalRanking;

Gradient Boosting assembles many weak decision trees, and
unlike the random forests, the approach grows trees sequen-
tially and iteratively based on the residuals from the previous
trees. Gradient boosting methods handle tricky observations
well and are optimized for faster and more efficient fitting
using data sparsity-aware histogram-based algorithm. In con-
trast to the pointwise split of the traditional Gradient Boosting,
which is prone to overfitting, the algorithm’s approximate gra-
dient creates estimates by creating a histogram for tree splits.
As this histogram algorithm does not handle the sparsity of the
data, especially for tabular data with missing values and one-
hot encoded categorical features, these algorithms improved
tree splits. For example, XGBoost uses Sparsity-aware Split
Finding, defining a default direction of tree split in each tree
node [17]. The LightGBM provides the Gradient-Based One-
Side Sampling technique, which filters data instances with
a large gradient to adjust the influence of the sparsity, and
Exclusive Feature Bundling combining features with non-zero
values to reduce the number of columns [18]. Our ultimate
goal is to assess the predictive power of these nine machine-
learning models in this real example.

Fig. 2: Exploratory Data Analysis - Locale, Math (top) Read-
ing (bottom)

IV. WEB DATA COLLECTION AND PROCESSING

A. Data Sources

The data was gathered from nine different public sources
as described in Table I. Common Core of Data (CCD) [30]
is the primary database on public elementary and secondary
education supplied by the National Center for Education
Statistics (NCES) in the United States. The CCD provided us
with public school characteristics, student demographics by
grade, and faculty information at the school district in Texas
for the fiscal years 2019, 2020, 2021, and 2022. State of
Texas Assessments of Academic Readiness (STAAR) data
was obtained from the Texas Education Agency (TEA) for the
fiscal years 2020, 2021, and 2022 for each school district [31].
The STAAR data we collected are the average scores for math
and reading tests and the number of students who participated
in the grades 3-8 tests. These data also include students’
numbers and average scores under various classifications, such
as Title 1 participants, economically disadvantaged, free lunch,
special education, Hispanic, Black, White, and Asian.

Texas School COVID-19 campus data was provided by
the Texas Department of State Health Services (DSHS) [32],
including the self-reported student enrollment and on-campus
enrollment numbers of the dates September 28, 2020, October
30, 2020, and January 29, 2021, at each school district in
Texas County COVID-19 data on infection and death cases
due to Coronavirus for each Texas County was parsed from
USAFacts source[33]. The average daily attendance (ADA)
is a sum of attendance counts divided by days of instruction
per school district and provided by TEA. Elementary and
Secondary School Emergency Relief (ESSER) Grant data
provided by TEA summarizes COVID-19 federal distribution
by TEA to school districts for the fiscal years 2019, 2020,
2021, and 2022. The Local Area Unemployment Statistics
(LAUS) data [34] was parsed from the U.S. Bureau of Labor
Statistics (BLS) for the years 2019 and 2021 to examine the
workforce impact on learning loss in the counties. Census
block group 2010 data [35] were included to see if the
county’s general population characteristics make a difference
in learning loss. Upon completing the initial data integration
process, merging data from nine sources by matching school
district I.D. and county FIPS code, the dataset encompasses
1,165 school districts in Texas, spanning 253 counties. It
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TABLE I: Merging from Nine Sources Using School District
I.D. and County FIPS Code, Resulting in a Dataset Covering
1,165 School Districts in Texas across 253 Counties

Data
Frame

Data Source Level RowXCol

CCD National Center for Education Stat [30] District 1189X66

STAAR Texas Education Agency [31] District 1184x217

TEA Texas Education Agency [8] District 1182x217

ADA Texas Education Agency [36] District 1226X3

ESSER Texas Education Agency [37] District 1208X6

Census Census Bureau 2010 [35] County 254x37

Covid USAFacts [33] County 254X8

LAUS U.S. Bureau of Labor Statistics [34] County 254X13

Covid DSHS [32] District 1216X7

Fig. 3: Math (top) and Reading (bottom) scores broken by race

comprises 506 features, including one categorical and 505
numerical variables.

CARES ESSER I 20, ARP ESSER III 21 features are part
of the Elementary and Secondary School Emergency Relief
(ESSER) grant programs, which are federal funds granted to
State education agencies (SEAs) providing Local education
agencies (LEAs) to address the impact due to COVID-19 on
elementary and secondary schools across the nation; thus, the
funds have been administered by Texas Education Agency
(TEA) and allocated in each school district in Texas [37],
[38]. CARES ESSER I: Authorized on March 27, 2020, as
the Coronavirus Aid Relief and Economic Security (CARES)
Act with $13.2 billion. Our data shows the allocation amount
for the fiscal year 2020. CRRSA ESSER II: Authorized
on December 27, 2020, as the Coronavirus Response and
Relief Supplemental Appropriations (CRRSA) Act with $54.3
billion. Our data show the allocation amount for the fiscal
year 2021. ARP ESSER III: Authorized on March 11, 2021,
as the American Rescue Plan (ARP) Act with $122 billion.
The data show the allocation amount for the fiscal year
2021. ESSER-SUPP: Authorized by the Texas Legislature
to provide additional resources for not reimbursed costs to
support students not performing well educationally. The data
was collected from March 13, 2020, to September 30, 2022.

B. Data Cleaning, Aggregation and Filtering

To help policymakers make more informative decisions on
learning recovery with localized efforts in each school district,

we collected data from nine different sources as described in
Table I to answer our research questions: i) Are students from
low-income backgrounds and minority students experiencing
more learning loss? ii) Do students of different grade levels
experience learning Loss differently? iii) Does the school
or school district reopening decision influence learning loss
experienced by students? iv) Is the mode of instruction (hybrid,
remote, in-person) related to learning loss? v) Is the school or
district attendance negatively correlated with learning loss? vi)
Does the local or regional infection rate lead to more learning
loss? vii) Does the local unemployment rate negatively affect
learning losses? If we can answer these questions with our
approach, we can also identify resilient factors in learning
recovery for Texas public schools.

Primarily, we gathered the Common Core of Data (CCD)
[30], which is the primary database on public elementary
and secondary education supplied by the National Center
for Education Statistics (NCES) in the United States. The
CCD provided us with public school characteristics, student
demographics by grade, and faculty information at the school
district in Texas for the fiscal years 2019 and 2021. Then, we
merged the CCD data with the State of Texas Assessments
of Academic Readiness (STAAR) data [31] from the Texas
Education Agency (TEA) for the fiscal years 2019, 2020, 2021,
and 2022 at each school district. The STAAR data we collected
are the average scores for math and reading tests and the
number of students who participated in the grades 3-8 trials.
These data also include students’ numbers and average scores
under various classifications, such as Title 1 participants,
economically disadvantaged, free lunch, special education,
Hispanic, Black, White, and Asian. Next, our data merged
with COVID-19 campus data from the Texas Department of
State Health Services (DSHS) [32], including the self-reported
student enrollment and on-campus enrollment numbers of the
dates September 28, 2020, October 30, 2020, and January 29,
2021, at each school district in Texas. Additional COVID-19
data involved confirmed infection and death cases [33] due to
Coronavirus at each county from USAFacts. Also, the average
daily attendance (ADA) [36], which consists of the sum of
attendance counts divided by days of instruction, and data
from the Elementary and Secondary School Emergency Relief
(ESSER) Grant Programs [37] – COVID-19 relief funding
– were collected from TEA for school district level. The
ADA data for fiscal years 2019 and 2021 were added to our
data to see the impact of district attendance, and the ESSER
data reflect the localized efforts of TEA allocating the grant
amount at each school district in the for the fiscal years 2019,
2020, 2021, and 2022. Also, we combined the Local Area
Unemployment Statistics (LAUS) data [34] from the U.S.
Bureau of Labor Statistics (BLS) for the years 2019 and 2021
to examine the negative impact of the unemployment rate on
learning loss at the county level. The census block group 2010
data [35] were included to grasp demographic characteristics
at a county for the general population. After completing the
initial data integration, data from nine sources were merged
by matching the school district I.D. and county FIPS code
and then integrated based on the district I.D. and county FIPS
code.
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TABLE II: Example of attributes aggregated for 2018-2019,
2020-2021, and 2021-2022

Attribute Aggregated Attribute Data
Total Schools 2020-2021 Total Schools Diff CCD, NCESTotal Schools 2018-2019
% Title 1 Eligible 2020-2021 % Title 1 Eligible Diff CCD, NCES% Title 1 Eligible 2018-2019
% Hispanic 2020-2021 % Hispanic Diff CCD, NCES% Hispanic 2018-2019
% Grades 1-8 2020-2021 % Grades 1-8 Diff CCD, NCES% Grades 1-8 2018-2019
% Tested Reading G3 2020-
2021 % Tested Reading G3 Diff STAAR, TEA

% Tested Reading G3 2018-
2019
Unemployed Rate 2021 Unemployed Rate Diff LAUS, BLSUnemployed Rate 2019
% ADA 2020-2021 % ADA Diff ADA, TEA% ADA 2018-2019

Among the 506 features analyzed, 416 display missing val-
ues across three data sources, varying from one to 88% within
our dataset. Notably, 408 features originate from STAAR and
TEA data, six from CCD and NCES, and two from COVID
and DSHS data. Within these 416 features, 332 have less than
20% missing values, while 24 exhibits more than 80% missing
values. The distribution is illustrated in Figure 4. Features
exhibiting over 20% missing values primarily originate from
the STAAR data, specifically concerning average scores and
participation in the STAAR tests. Consequently, we eliminated
these features from the STAAR dataset. Additionally, we
excluded school districts lacking CCD and COVID data,
resulting in 955 public school districts in Texas available for
analysis, featuring a total of 119 features devoid of missing
values. Out of 119 features, we aggregate the 58 features
that duplicate the data for 2019 and 2021 into 29 differential
features as illustrated in Table II. For example, Total Schools
2020-2021 and Total Schools 2018-2019 features are aggre-
gated into Total Schools Diff, and the total number of features
is reduced to 90.

C. Data Labeling

Our data set is unlabeled; thus, the process be-
gins by normalizing the individual grade scores, ensuring
consistency across different scales, through the equation
Normalized Score = grade score

max(grade score) . Following this, the dis-
trict average is calculated by summing up the scores of
grades G3 to G8 and dividing by the total number of
grades. This provides an overarching view of the academic
performance within the district, represented by the equation
District Average = G3+G4+G5+G6+G7+G8

Total number of grades . Subsequently, the
percentage loss in performance is computed over time in-
tervals, reflecting changes in educational outcomes. This is
expressed through the equations % Loss = Avg 2021−Avg 2019

Avg 2019

and % Loss = Avg 2022−Avg 2021
Avg 2021 . Finally, the obtained loss

percentages are interpreted to categorize the observed trends.
These interpretations are encapsulated in the labeling criteria:
Learning Gain if the Loss is greater than zero, Expected if the
Loss equals zero, and Learning Loss if the Loss is less than
zero. This comprehensive process enables the assessment of

Fig. 4: Percentage of missing values for 416 features in the
aggregated data. 2022-2023

educational trends, facilitating informed decisions and inter-
ventions to enhance learning outcomes.

When analyzed by year, the normalization process encom-
passes various facets of educational institutions, such as the
count of operational public schools, identification of School-
wide Title 1 designations, and Title 1 eligibility. Additionally,
it includes insights into the educational workforce, encom-
passing Full-Time Equivalent (FTE) teachers and overall staff
counts, along with lunch program statistics like free and
reduced-price lunch participants. Race and ethnicity distribu-
tions among Asian, Hispanic, Black, and White demographics,
delineated by grade groups from Prekindergarten to Grade 12,
are normalized for accurate assessment. Attendance metrics
undergo normalization in terms of average daily attendance
(ADA) and as a percentage of total students per district. By
grade, the standardization involves the Percentage of students
taking the STAAR reading and math tests, with average scores
ratio-ed to the 100th percentile in each grade, regarding popu-
lation metrics, normalization factors in confirmed COVID-19
cases, and deaths as percentages of the county population. It
also encompasses race/ethnicity and age group distributions as
a percentage of the county population in 2010. Lastly, when
assessed by date, the normalization process considers the Per-
centage of students on campus on September 28, 2020, Octo-
ber 30, 2020, and January 29, 2021. Additionally, it categorizes
different household types and housing units as percentages of
the total number of households and housing units in 2010,
respectively. This comprehensive standardization methodology
ensures a consistent and comparable analysis across diverse
data points and timeframes.

The distribution of the loss values in Figure 5 informed us to
set a threshold determining the Loss and Gain. The Distribu-
tion shows that more districts have experienced Loss in math
as the median for math (-0.03) is lower than for Reading (0).
We proceeded with further analysis and prediction separately
for math and Reading. The middle 50% of school districts
are labeled as "Expected," the loss values below the 25th
percentile are set to be "Loss," and the loss values above
the 75th percentile become "Gain." As data is labeled as
Learning Loss, Expected, and Gain, we explore a correlation
between features and the label. Figure 3 illustrates (a) White
students are correlated to our label as they are the majority
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Fig. 5: Distribution of normalized STAAR scores between
2019-2022. More school districts in Texas faced learning loss
in math than in reading

population for Gain and decreased towards Loss label; (b)
Hispanic students are 2/3 of Loss students then reduced as for
Expected and Gain labels for both math and reading. Also, we
realized that the locale of school districts is correlated to the
label learning loss, as illustrated in Figure 2 (a), confirms that
over half the schools are located in rural areas in Texas despite
the positive correlation between rural areas and the label from
Loss to Gain; however, Loss occurring in schools located in
city and suburb areas increasingly appeared in (b) and (c).

TABLE III: Resilient factors for Top 15 (math) and 14 features
(reading) Low income and grade level are both subjects’ most
impactful resilience factors

Resilient Factor Math Reading
Low-income 4 5
Grade Level 4 4

Race/Ethnicity 3 1
Mode of instruction 2 3

Attendance 1 0
Census demographics 1 0

Unemployment 0 1

D. Data Pre-Processing

In LossA we propose a dimensionality reduction dataset to
enhance interpretability and pinpoint resilience factors associ-
ated with Learning loss. We remove noise and missing values
from the data, resulting in reducing 58 duplicated features
representing data for 2019 and 2022 into 29 differential
features, as demonstrated in Table II. For instance, features
such as "Total Schools 2020-2021" and "Total Schools 2018-
2019" are combined into a single feature, "Total Schools Diff,"
resulting in a total reduction to 90 features.

Conversely, in the dataset LossB, these features are treated
independently. In this approach, the raw integrated data is
employed for the Gradient Boosting experiment without nor-
malization while also considering missing values. Unlike
LossA, where attributes are aggregated and normalized to
reduce dimensionality and enhance interpretability, LossB
treats each feature individually. While this approach may

result in a more prominent feature space and potentially in-
crease computational complexity, it allows for a more detailed
analysis of features and their impact on learning loss. By
examining each feature in isolation, we aim to gain insights
into the specific factors contributing to learning loss without
the influence of normalization or aggregation techniques. This
approach provides a complementary perspective to LossA and
allows for a comprehensive exploration of the dataset, which
encompasses 506 attributes across 1,165 school districts.

V. RESULTS

A. Attribute Importance Analysis

We executed the ten different feature selection approaches
to detect the resilient factors for Learning Loss due to COVID-
19 using the data set with 90 features and 955 school districts
in Texas as a baseline.

To distinguish between math and reading subjects in pre-
dicting learning loss, the feature selection process was iterated
for each subject individually. Variance Threshold, SFS Ridge,
and SFS KNN provide a binary selection of features. ElastiNet
Logistic Regression fit for the Gain and Loss provides scores
for a subset of coefficients that are not zeroed out. Random
Forest feature importance, Random Forest permutation, and
Ridge permutation importance offer non-zero scores to all 90
features, and RFE Ridge Regression and RFE Random Forest
provide attribute ranking. Figure 7 sums up the filtering results.
The five methods ranked 18 features as top importance and
agreed to exclude 33 descriptors, mainly from the workforce,
Census, and COVID data sources. The difference between
free lunch and the COVID deaths in the county had little
impact on learning loss. Next, we sort the remaining 57
features using Random Forest feature Importance, Random
Forest permutation, Ridge permutation importance, RFE Ridge
and Random Forest scores, and ElastiNet Gain and ElastinNet
Loss. Since all of them have importance ranking per feature
(including the sign), we first normalize the scores for each
method and then sum them.
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Fig. 6: Analysis of Resilience Factors: Random Forest Recur-
sive Feature Elimination, Ridge Recursive Feature Elimina-
tion, Sequential Feature Selection with Ridge, and K-Nearest
Neighbors to identify significant math resilience factors

First, we aggregate five filtering method outcomes for
reading and math: Variance Threshold, SFS KNN, SFS Ridge,
and ElastiNet Gain and ElastiNet Loss binarized coefficients.
The Initial Importance Values are the raw scores from the
machine learning methods and are tricky to compare due to
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Fig. 7: Analysis of Resilience Factors: Random Forest Recur-
sive Feature Elimination, Ridge Recursive Feature Elimina-
tion, Sequential Feature Selection with Ridge, and K-Nearest
Neighbors to identify significant reading resilience factors
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Fig. 8: Comparison of Loss, Expected, and Gain Metrics for
Lasso, Ridge, and ElasticNet Regularization Techniques to
identify significant math resilience factors
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Fig. 9: Comparison of Loss, Expected, and Gain Metrics for
Lasso, Ridge, and ElasticNet Regularization Techniques to
identify significant reading resilience factors

their non-uniformity. The Binary Selection Values are the first
output transformation, where we binarize all scores as SFS
KNN, SFS RR, and Variance Threshold, which are already
binary. To transform the features into a binary format, we use
the following approach: For RFE methods, we retain only the
rank of one feature and assign a value of 1 to it while the
others get a value of 0. For logistic regression, we give a +1
score to features with a positive coefficient and -1 to those with

Low Income Attendance Demographics Race/Ethnicity County COVID District Makeup Mode of Instruction Testing Prior Score Locale
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Fig. 10: Analysis of Resilience Factors: Feature Importance
and Permutation Importance - Random Forest; Permutation
Importance - Ridge comparison to identify the significant math
resilience factors
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Fig. 11: Analysis of Resilience Factors: Feature Importance
and Permutation Importance - Random Forest; Permutation
Importance - Ridge comparison to identify the significant
reading resilience factors

a negative coefficient, while the coefficients with a value of
0 are ignored. For feature importance, we select the top 50%
of features with positive scores and assign a value of 1 to
them, while the others get a value of 0. For the importance of
permutation features, we give 1 to features with positive scores
and 0 to those with negative or zero scores. Finally, we sum the
scores and sort the feature importance for each subject out of 9.
The Impact Score Values are the second transformation of the
output. They are obtained by normalizing the scores of each
method by dividing them by their sum of overall features. This
normalization ensures that each feature contributes equally to
the final ranking. Next, we calculate the absolute value of
the normalized score for each attribute and sum them up to
create a feature ranking. The top 20 features with the highest
scores are selected for math and reading by prioritizing the
impact score, as it combines both binary and non-zero scores.
In contrast, the binary score is used as a secondary measure
to understand the importance. The number of features selected
is based on a drop in impact score after the top 20 features,
labeled the cutoff point. Secondary labels were also applied
to the features to understand what "type" of the feature was
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TABLE IV: Method index and corresponding full name and
output format. Feature dimensions after the method is applied
are in the last two columns for math and reading

Index Method Output Math Reading
LR Lasso Logistic Regression with L1 Reg. score 51 51
LR Elas-
ticNet

Logistic Regression with L1+L2 Reg. score 41 45

PFI LR Permutation Feature importance for
LR L2

score 28 82

PFI RF Permutation Feature importance for
Random Forest

score 70 26

FI RF Feature Importance Random Forest score 45 45
VR Variance Threshold binary 20 20
SFS LR Sequential Feature Search with Ridge

Regression
binary 45 45

SFS
KNN

Sequential Feature Search KNN binary 45 45

RFE LR Recursive Feature Elimination with
Ridge Regression

rank 6 5

RFE RF Recursive Feature Elimination Ran-
dom Forest

rank 36 36

most significant. Overall, this approach allows us to compare
the relative importance of each feature and identify the most
important ones.

Table IV outlines the dimension each approach reduces to
the various numbers. RFE with random forests only selected
6 and 5 features for math and Reading, respectively; however,
the PMI method selected the most significant number of
features for both subjects: 70 features for math using random
forests and 82 features for reading using Ridge Regression.
The 2021-2022 importance ranking of the features resulting
from the ten approaches is shown in Table V. The top 20 for
math (a) and for reading (b) selected by six or more feature
selection methods selection results are listed in Table VI. The
most significant feature predicting learning loss in math is
% of Campus 10/30/20, the enrollment of students in the
campus district on October 30, 2020, representing the mode of
instruction. For reading, three critical features were selected,
all of which were resilience factors related to the Low-income
backgrounds of students: CARES ESSER I 20 (Coronavirus
Aid, Relief and Economic Security (CARES) grant amount
in 2020), ARP ESSER III 21 (American Rescue Plan Act
(ARP) grant amount in 2021), % Reduced-price Lunch Diff
(Reduced-price Lunch Eligible Students Difference in percent
between 2019 and 2021). The top 20 in math in Figure 6 and
the top 20 in Reading in Figure 7 were important features
selected by six or more selection methods. Low income
and Grade level are the most influential resilient factors to
predict learning loss for math and reading, as shown in Table
III. Race/Ethnicity and mode of instruction continued to be
decisive, resilient factors for both subjects; on the other hand,
Attendance and Census demographics are considered signifi-
cant factors only in math, and Unemployment is essential only
for Reading. Although we now realize these essential features
can identify the resilient factors for Loss or Gain in learning
due to the COVID-19 pandemic, it is still unknown whether
those features positively impact learning. For example, we
analyzed positive or negative correlations between the most
critical features and our label, Loss, Expected, or Gain, in math
and reading. The students who experienced Loss in reading
received more significant funding for all funding programs on
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Fig. 12: Analysis on the most important feature for predicting
learning loss: % of Campus 10/30/20. Gain and Expected label
school districts have more students who went to school on
October 30, 2020,

average than the students who participated, showed Gain or
Expected in the same subject. The ESSER funds have been
distributed to proper districts in need of financial help for
adapting and preparing for learning Loss due to COVID-19 as
the ESSER fund amounts are calculated by a formula based
on Title I, Part A grant that is considered as a poverty proxy
[37], [38].

Figure 12 indicates that % of Campus 10/30/20 is positively
correlated with Gain as the Distribution of school districts
with the highest proportion of students on a campus populated
more for Gain and Expected in math; however, the students
experienced Loss are inhabited the most where the enrollment
is 0%. It is clear that in-person classes, the mode of instruction,
were the key to avoiding Loss in math.

B. Modeling Learning Loss from Public Data

The data sets have been randomly split into 80% of the
training set and 20% of the test set with shuffling and
stratification on the label. We use performance metrics suitable
for prediction problems to find the best model. The accuracy
score for both Gain and Loss is used to get a big picture, and
the F1 score is used for an in-depth measure as it harmoni-
cally includes the precision and the recall scores. Matthews’
correlation coefficient (MCC) considers true negatives, class
imbalance, and multi-class data. Each model runs with a 10-
fold cross-validation of GridSearch to find optimal hyper-
parameters. As the boosting algorithm trains weak learners
iteratively, early stopping reduces training time and avoids
overfitting. At every boost round, the model evaluates and
decides whether to stop or continue the training when the
model shows no more improvement for a certain number of
consecutive rounds in terms of the evaluation metric specified
as the fit parameter. For early stopping, a validation set, the
split test set at the beginning of the modeling process, and the
number of early stopping rounds that are set to 10% of the
maximum number of boosting iterations are provided.

We employed five state-of-the-art machine learning models,
including Ridge Regression, Support Vector Machine (SVM),
K-Nearest Neighbors (KNN), Random Forests, and Gradient
Boosting, on our dataset. These models were trained using
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TABLE V: Top 20 Attributes for 2021 dataset
Math

Feature Impact Score Binary Score
Median Household Income 6.6214 5
Total Students 2018-2019 6.2266 7
Total Students 2020-2021 6.1418 6
Total Students 2021-2022 6.1089 7
Rural: Distant 6.0521 3
# of Families 10 5.8406 4
Average Annual Pay 5.8252 2
ARP ESSER III 21 NORM 5.7606 3
CARES ESSER I 20 NORM 5.7590 4
Rural: Remote 5.7405 3
# of Housing Units 10 5.7040 3
# of Households 10 5.7005 3
Per Capita Income 5.6966 3
% of Pop Under 18 in Poverty 5.6840 3
Median Age Male 10 5.6834 3
County Population 5.6794 2
% of Pop in Poverty 5.6740 2
CRRSA ESSER II 21 NORM 5.6704 2
Median Age 10 5.6540 2
Median Age Female 10 5.5848 1

Reading
Feature Impact Score Binary Score
Average Annual Pay 6.4049 3
Per Capita Income 6.2658 4
Total Students 2021-2022 6.0159 6
County Population 5.9212 5
# of Families 10 5.9140 6
Total Students 2018-2019 5.8932 5
Total Students 2020-2021 5.8707 5
# of Households 10 5.8357 5
% of Pop Under 18 in Poverty 5.8048 4
CRRSA ESSER II 21 NORM 5.8094 4
Median Household Income 5.7823 5
# of Housing Units 10 5.7847 4
Median Age Female 10 5.7612 3
% of Pop in Poverty 5.7661 4
Rural: Distant 5.7042 3
CARES ESSER I 20 NORM 5.7132 4
ARP ESSER III 21 NORM 5.6947 4
Median Age Male 10 5.6591 3
Median Age 10 5.5855 2
Rural: Remote 5.5603 2

our complete set of 90 features and ten additional feature
groups derived from various feature selection techniques.
These techniques encompassed Recursive Feature Elimination
(RFE) with Ridge Regression and Random Forests, Variance
Threshold, Sequential Forward Selection (SFS) with Ridge
Regression and K-Nearest Neighbors (KNN), Random Forests
feature importance, Lasso regularization, and Pointwise Mu-
tual Information (PMI) with Ridge Regression and Random
Forests. The application of these techniques is detailed in
Figure 14. Performance metrics, including accuracy, F1 score,
and Matthews correlation coefficient (MCC), for these models,
are presented in bar graphs in Figure 13 for baseline models
and in Figure 14 for gradient boosting models. Overall,
the prediction of learning loss for Reading exhibits weaker
performance than for math. Although most models perform
similarly across both subjects, with the exception of KNN,
gradient boosting for math and ridge regression for reading
demonstrates the highest average accuracy, F1 score, and
MCC.

Four advanced gradient boost models, XGBoost, Light-
GBM, CatBoost, and HistGradientBoosting, train the same sets

TABLE VI: Top 20 Attributes for 2022 dataset
Math

Feature Impact Score Binary Score
Total Students 2018-2022 6.2266 7
% On Campus 10/30/20 1.4300 5
% White Students 2020-2021 0.6324 5
% Tested Math - G3 2020-2021 0.7360 5
Median Household Income 6.6214 5
% On Campus 09/28/20 0.6603 4
% White Students 2018-2019 0.6082 4
% On Campus 01/29/21 0.6892 4
Total Staff 2020-2021 0.6071 4
Total Teachers 2020-2021 1.2075 4
# of Families 10 5.8406 4
CARES ESSER I 20 NORM 5.7590 4
% Tested Math - G5 2018-2019 0.8683 4
% Asian Students 2018-2019 0.5235 4
City: Small 0.4131 4
Suburb: Mid-size 0.3970 4
% White Students 2021-2022 0.5163 3
% Hispanic Pop 10 0.1885 3
% Tested Math - G5 2020-2021 1.0852 3
% Tested Math - G6 2020-2021 0.2561 3

Reading
Feature Impact Score Binary Score
# of Families 10 5.9140 5
Total Students 2021-2022 6.0159 5
County Population 5.9212 5
# of Households 10 5.8357 4
Total Students 2018-2019 5.8932 4
Total Students 2020-2021 5.8707 4
# of Housing Units 10 5.7847 4
CRRSA ESSER II 21 NORM 5.8094 4
% Asian Pop 10 0.3936 3
% Prek 2018-2019 0.3689 3
% Tested Reading - G7 2021-2022 0.3498 3
Median Household Income 5.7823 3
Total Teachers 2020-2021 0.8628 3
% On Campus 10/30/20 0.4773 3
% Tested Reading - G8 2018-2019 0.2727 3
% White Students 2020-2021 0.5280 3
% White Students 2021-2022 0.3913 3
% of Pop Under 18 in Poverty 5.8048 3
% of Pop in Poverty 5.7661 3
City: Small 0.1889 3

of features for comparison purposes. To improve the gradient
boosting models, we penalize and regularize the algorithm by
hyperparameter tuning so that we aim to increase accuracy
and avoid overfitting. These hyperparameters are searched with
a 5-fold cross-validation RandomizedSearch with the number
of iterations that is 20% of parameter distributions of each
model. For example, XGBoost is supposed to explore 100
distributions of the parameters; the number of iterations for
RandomizedSearch is 20 times. Constraints on tree structures
aid in curbing the growth of overly complex and extensive
trees. This is achieved by optimizing parameters such as the
number of trees, tree depth, and the number of leaves per tree.
Additionally, adopting a smaller learning rate, typically below
0.5, allows for a gradual adjustment of tree weights during
each iteration, thereby minimizing errors. Furthermore, setting
the optimal L1 and L2 regularization terms penalizing the sum
of the leave weights improves the models by simplifying the
complexity and size of the model [17]. The gradient boosting
algorithms also show higher prediction power for math than
reading and indicate no significant model exceeding other
models, including the best state-of-the-art models, in terms
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TABLE VII: Best Performance of the nine machine learning
models that are trained for (a) Math and (b) Reading for the
initial dataset. CatBoost is the overall winner

Model Best Feature Acc F1 MCC
Set Selection [0,1] [0,1] [-1,+1]

LR Ridge 45 FI RF 0.639 0.622 0.368
SVM 45 SFS LR 0.628 0.584 0.343
KNN 55 LR Lasso 0.618 0.591 0.318

Random Forests 45 SFS LR 0.639 0.582 0.363
Gradient Boost 36 RFE RF 0.644 0.622 0.375

CatBoost 36 RFE RF 0.675 0.645 0.434
HistGB 45 SFS KNN 0.634 0.609 0.35

LightGBM 70 PMI RF 0.644 0.601 0.372
XGBoost 21 VR 0.66 0.616 0.405

(a) Math

Model Best Feature Acc F1 MCC
Set Selection [0,1] [0,1] [-1,+1]

LR Ridge 45 SFS LR 0.607 0.522 0.303
SVM 45 SFS KNN 0.586 0.553 0.274
KNN 45 SFS KNN 0.571 0.536 0.232

Random Forests 45 SFS LR 0.592 0.513 0.26
Gradient Boost 45 SFS LR 0.56 0.542 0.231

CatBoost 82 PMI - Ridge 0.623 0.548 0.338
HistGB 45 SFS LR 0.576 0.495 0.219

LightGBM 90 All 0.602 0.516 0.288
XGBoost 90 All 0.613 0.535 0.312

(b) Reading

of performance.
The various dimensions of the selected features were ex-

perimented with to examine the effects of dimensionality
reduction methods and the best set of the features by predicting
learning loss with the machine learning models introduced in
Section III-B. Then, our initial data set was also experimented
with gradient boosting models in terms of missing values
and their imputation. For the nine models, the best set of
features for each model is described in Table VII (a) for
math and (b) for reading; both subjects suggest CatBoost as
the most robust models: 36 features selected by RFE with
random forests with precision (68%), F1 (65%) and MCC
(43%) for math and 82 features selected by PMI with ridge
regression with precision (62%), F1 (55%) and MCC (34%)
for Reading. The Gradient Boosting algorithms CatBoost and
XGBoost are the best choices of all the machine learning
models we have experimented with to predict learning loss
for both subjects. Although these models performed better in
predicting failure in math rather than reading, in general, the
performance gap between the four gradient boosting models
and the five state-of-the-art models, except KNN, is negligible,
as their difference in accuracy is around 3%. Furthermore, no
clear indication of the best dimensionality reduction technique
that performs across all models emerged.

C. Best Features vs. Raw Data for Gradient Boosting Models

All four gradient boosting models built – XGBoost, Light-
GBM, CatBoost, and HistGrandientBoosing – are aware of
the sparsity of data, such as missing values, by finding optimal
tree split. Recall that the initial data set, also known as LossB,
containing 506 features (505 numerical and one categorical)
for 1,165 school districts, includes 416 details with missing
values as small as 1% and as large as 88% of each point.
In this experiment, we executed the pipeline of building the
advanced gradient boosting models for raw data. We con-
ducted a comparison with models trained on data processing

GB
SVM RF

Ridg
e

KNN

Model

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
 S

co
re

Performance Metrics - Baseline Models

Metric
Test Accuracy
Precision
Recall
F1
MCC
ROC

Fig. 13: Five state-of-the-art machine learning models fitted to
10 feature sets for predicting learning loss. With the train-test
split, GridSearch, and 10-fold cross-validation.
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Fig. 14: Four advanced gradient boost models fitted to 10
feature sets for predicting learning loss. With the train-test
split, GridSearch, and 10-fold cross-validation.

using various feature engineering techniques to assess their
predictive power concerning learning loss. The classification
tasks for math and Reading were completed. All features with
missing values except for eight details are subject-specific,
e.g., the number of grade 3 students tested in math. After
dropping the subject-specific math features for Reading and
vice versa, 302 was the dimension of characteristics for this
experiment for each subject. 212 of 302 details contain missing
values. We have three data sets for comparison: (1) the best
sets of features in Table VII from the performance results
of the four gradient boosting models in Figure VII, (2) raw
data without imputation for missing values, and (3) raw data
impute missing values with mean values. Our data has only
one categorical attribute, including no missing values, so the
imputation method is limited to average. Regarding the per-
formance of Best Features vs. Raw data, all models improved
with LossB, throughout all performance metrics, especially
MCC, for both subjects; HistGradientBoost increased MCC
the most by 47% following LightGBM (43%), CatBoost (25%)
and XGBoost (24%) for math, and the improved MCC for
Reading is even higher with 124% for HistGradientBoost and
45%, 43%, and 41% for LightGBM, CatBoost, and XGBoost,
respectively. For a closer look, we also observed that the raw
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data set without imputation performed slightly better compared
to the raw data set with imputation for all models and subjects;
MCC for math rose the most, over 6%, in CatBoost and
HistGradientBoost; on the contrary, XGBoost showed the most
significant growth for MCC in reading with 10%.

VI. CONCLUSION AND FUTURE WORK

In this study, we employ a data-driven approach to
investigate the impact of the COVID-19 pandemic on
learning loss, utilizing an intentional data science pipeline.
Despite employing ten distinct feature selection methods to
facilitate the automatic extraction of crucial features from
publicly available datasets, our findings reveal a limited
influence on prediction accuracy across the nine machine
learning models trained on both feature-selected sets and
raw data. Notably, gradient-boosting algorithms, particularly
XGBoost and CatBoost, consistently outperform other
models, demonstrating remarkable efficacy in managing
missing values prevalent within the raw datasets. Our
reproducible experiments and datasets are accessible at [39],
providing valuable tools for policymakers to strategically
allocate resources and interventions to mitigate the effects
of learning loss. A deeper analysis of 2021 to 2022 data
revealed that shifts in feature significance primarily occurred
at the individual feature level rather than through changes
in resilience factor importance. Significantly, the mode
of instruction and prior score emerged as the primary
resilience factors during this period. Overall, low income
and grade level proved to be the most influential factors
in predicting learning loss for both math and reading.
Noteworthy contributors to math performance include
attendance and census demographics, particularly the % of
Campus 10/30/20. Additionally, students from low-income
backgrounds and regions with higher unemployment rates
were particularly impactful in predicting reading learning
loss. This highlights the pivotal role of these resilience
factors in comprehending and mitigating learning loss
dynamics within the educational sector. In future research,
we aim to broaden the temporal scope of our analysis
and incorporate more granular data sources to deepen
our understanding of the enduring repercussions of the
COVID-19 pandemic on education. Additionally, exploring
novel feature engineering techniques or enhancing existing
ones could bolster prediction accuracy across various datasets.
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