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Abstract— All people have a fingerprint that is unique to them 

and persistent throughout life. Similarly, we propose that people 

have a gaitprint, a persistent walking pattern that contains unique 

information about an individual. To provide evidence of a unique 

gaitprint, we aimed to identify individuals based on basic 

spatiotemporal variables. Healthy young adults were recruited to 

walk overground on an indoor track at their own pace for four 

minutes wearing inertial measurement units. A total of 18 trials 

per participant were completed between two days, one week apart. 

Four methods of pattern analysis, a) Euclidean distance, b) cosine 

similarity, c) random forest, and d) support vector machine, were 

applied to our basic spatiotemporal variables such as step and 

stride lengths to accurately identify people. Our best accuracy 

(99.38%) was achieved by the support vector machine and by the 

top 5 and top 10 most similar trials from cosine similarity. Our 

results clearly demonstrate a persistent walking pattern with 

sufficient information about the individual to make them 

identifiable, suggesting the existence of a gaitprint. 

 
Index Terms— Biometrics, Euclidean distance, Gait recognition, 

Inertial measurement units (IMUs), Noise, Random forests, 

Support vector machines (SVM), Variability. 

I. INTRODUCTION 

alking is a fundamental function of the human body 

and is ubiquitous in daily life. Walking generally 

entails the same process, such as moving the center 

of mass over the support leg; however, there is considerable 

variety in the way that any given person solves this task. The 

uniqueness implied by that description supports the idea that 

each person might possess a “gaitprint” in the same way each 

person has an enduring fingerprint observable across the 

lifespan. Indeed, one can reliably identify friends and family 

with limited visual - in the extreme, only auditory - information. 

For example, in the classic ‘point light walker’ paradigm, 

reflective markers that are placed on anatomical landmarks of a 

participant are video recorded during walking [1]–[3].  

Otherwise, the room is completely dark such that, when played, 

the video displays a series of floating white dots on a black 

background. Days or months later, the same collection of 
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participants are able to recognize each other, and naïve 

participants can recognize changes in the behavior of an 

unknown person’s actions [1]–[3]. Anecdotally, people can also 

identify others based purely on the sounds of their stepping 

patterns from the variance in their cadence. This ability appears 

to be supported by literature [4], [5]. Despite those indirect 

results, the actual question as to whether people exhibit a unique 

gaitprint remains unanswered. In this manuscript, we contend 

that the key to discovering a gaitprint rests on the examination 

of the variability in human movement. Based on that 

contention, the purpose of this paper is to capitalize on the 

fundamentals of human movement, and its variability, to 

produce evidence for unique gaitprints, a collection of gait 

features that can reliably identify an individual [6]. We 

hypothesize that principled gait features including movement 

variability can uncover a unique gaitprint for each person [7]. 

To probe this hypothesis, we draw from numerous methods to 

accurately identify individuals with quantitative descriptions of 

lower-body kinematics [1], [8]. We combine simple pattern 

recognition techniques with detailed, multi-day measurements 

of gait features to identify each individual's gaitprint. 

 

A. Human Movement and the Gaitprint 

Many human movements, like walking, entail many repetitive 

cycles. Despite the cyclic nature of gait, there is considerable 

variability from one stride to the next. Some steps are short; 

some are long. Some steps are slow; some are fast. The 

variability across cycles was conventionally interpreted as a 

representation of uncontrolled noise and/or error to be removed 

[7]. However, a large amount of research has revealed that the 

variability underlying human movement and signals is not 

merely uncontrolled noise nor error [7], [9]–[11]. Based on 

these findings, here we propose a novel hypothesis that the 

variability observed over repetitive gait cycles is fundamental 

to the unique strategies people employ to walk about the world. 

That is, variability reflects the unique walking solutions learned 

over the course of development. Hence, variability encapsulates 

the developmental history of an individual and is the source of 
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features that ultimately allow identification from gait features. 

 

More formally, we define a gaitprint as a persistent walking 

pattern that contains unique information about an individual. As 

an analogy, a fingerprint contains ridges with swirls and arches 

of varying widths that ultimately lead to changes in ridge 

placement, orientation, or bifurcations [6]. Microclimates 

within the womb detail the makeup of a fetus’ fingerprint within 

an environment that will never be the same [6]. Much like the 

ridges of finger pads providing meaningful information about 

the person, a certain set of gait characteristics including 

kinematics and spatiotemporal variables directly influence gait. 

Distinct joint trajectories, stride lengths, and other parameters, 

are the ‘ridges’ of gait that provide distinct information about 

walkers. These ‘ridges’ ultimately form a toolbox from which 

we can selectively use gait features to distinguish between 

people using pattern recognition. 

 

B. Gait as a Biometric 

The use of gait features for biometrics – identification based on 

bodily motions and features – is not new [12], [13]. Several 

previous studies have attempted to identify people based on 

their gait [14]–[16]. Some other studies included silhouette-

based identification by reducing video frames of a person into 

a silhouette [17]–[19]. Characteristics of the silhouette such as 

its size and shape can be compared between people for 

identification [18]–[21]. Another method included kinematics-

based identification by directly measuring, or estimating, limb 

kinematics for comparison [15], [22]–[25]. However, silhouette 

and kinematics-based identification methods share common 

limitations. Silhouette-based identification may be affected by 

camera perspective, shadows, or background scenes that 

obscure or completely occlude the participant walking [12], 

[13], [19]. In addition, the burden lies upon the participant to 

come into the laboratory to be equipped with full body sensors 

for kinematic-based identification. Specific to silhouette 

identification, appearances can change due to various factors 

like clothing, therefore reducing person identification accuracy 

across days [19], [26]. There are also limitations specific to 

kinematic-based identification. For example, previous studies 

have used abstract and complex data transformations or use 

thousands of identifiable features that are accurate, but may 

take a long time to calculate or are not generalizable [15], [27]. 

These studies approach gait identification by evaluating 

kinematics between high and low dimensions rather than 

identification based on raw kinematics. Their principal 

component and three-dimensional transformations may be 

effective but lose their intuitiveness and clarity. One such study 

achieved 100% identification accuracy [27]. However, this 

achievement is facilitated by training and testing within trials, 

rather than training and testing between trials. Perfect 

identification accuracy is not unexpected since kinematic 

measurements within the same trial are likely to be correlated 

and are self-similar across scales [28]–[31]. The lack of 

identification between trials also implies an inability to 

correctly identify discontinuous walking bouts, which would be 

more realistic for on-the-fly identification across hours, days, 

months, or even years. In addition, computation times may be 

too slow for near-real-time person identification during time-

sensitive situations. Therefore, the goal of perfect identification 

accuracy from simple and easy to compute variables between 

walking trials must still be achieved. 

 

For other kinematic related studies, their limitations may have 

led to a range of success between 42 to 99.71% identification 

accuracy [14], [15], [23]–[25], [32], [33]. Across this range, 

perfect identification accuracy may have been prevented by 

random chance of assignment to gallery and probe, limitations 

of the identification methods, or limitations of the variable 

selections themselves. Some studies directly address and 

ameliorate the issues of reduced identification ability  occurring 

from sources such as inconsistent camera angles [22], [34]. Our 

team’s approach focused on treating all these above-mentioned 

limitations to progress pattern recognition towards perfect 

accuracy using a simple framework.  

 

C. Advantages 

The present work may be distinguished by a focus on sensors 

that record human movement, regardless of viewpoint, and a 

focus on long, curvilinear walking paths within an environment 

that is familiar to participants. Inertial measurement units 

(IMUs) are portable and do not rely on a fixed camera 

placement, predefined calibration space, or predefined capture 

volume. The IMUs are especially useful because they allow our 

participants to walk around a looping indoor track with variable 

lighting, noise, and foot traffic. These benefits are seen as an 

improvement because we do not rely on treadmills that are 

known to affect gait [35]–[37]. We also focus on basic lower 

body gait descriptors that are computationally efficient and 

easily described to a lay person. Stride lengths and step widths 

can be recognized in real time and are intuitive to interpret and 

describe. For example, a close family friend might have a 

distinctly large step width that makes them easily recognizable 

from a distance. Our simple biomechanical approach is in stark 

contrast to more abstract means of pattern recognition [15], 

[27]. In addition, only a few studies use a limited number of 

kinematic measures of variability, whereas one-third of our gait 

features are about variability [14], [25], [38], [39]. Finally, we 

successfully tackle the challenge of multi-day person 

identification. High identification accuracy over two data 

collection sessions, separated by one week, provides evidence 

that gait characteristics are a useful tool for identification 

between days. Those advantages serve as the foundation for our 

pattern recognition study reported here. 

 

D. Purpose 

The purpose of this paper is to determine if gait is unique to 

each person. Overall, we hypothesize that the way each person 

walks reveals subtle information about their identity. 
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Fig. 1. (a) Indoor track where overground walking data was 

collected. (b&c) Anterior and posterior views of the Noraxon 

IMU setup. 

II. METHODS 

A. Data Acquisition 

Thirty healthy young adults between the ages 19-35 were 

sampled from the NONAN GaitPrint dataset [40]. Between 2 

days, participants completed 18, 4-minute, self-paced 

overground walking trials (n = 540 total trials) on a 200-meter 

indoor track while wearing 16 Noraxon Ultium Motion inertial 

measurement units (IMUs) recording at 200Hz (Fig. 1). 

Participants were also given a short, optional break after every 

3 trials. A total of 74 variables were calculated including 

bilateral spatiotemporal variables consisting of distance 

traveled, average speed, cadence, stride and step lengths, 

widths, and times, supplemented by the percentage of stance, 

swing, and support phases (see Supplementary Material and 

Supplementary Fig. 4-9). Bilateral lower body joint angles (hip, 

knee, ankle) were used to calculate their mean and standard 

deviations of peak flexion, extension, range of motion, and 

velocity. All spatiotemporal calculations were completed in 

Matlab version R2022b and the following data handling and 

identification models were completed using Rstudio version 

4.2.2 [41]–[44]. 

B. Data Handling 

We used three methods to split our data into galleries and 

probes (Fig. 2). Split 1 (70/30) included a random 70%/30% 

split of all trials to be placed in the gallery and probe, 

respectively. That meant a total of 378 walking trials were used 

as a reference for the remaining 162 probe trials. Split 2 

(referred to henceforth as Day 1) used all trials from day 1 as 

the gallery set, and the day 2 trials were used as the probe. That 

is, 270 trials were used as a reference for the remaining 270 

probe trials. Split 3 (now referred to as Trial 1) used the very 

first trial from day 1 as the gallery set, and the remaining 17 

trials per participant were used as the probe. A total of 30 

walking trials were used as a reference for the remaining 510 

probe trials.  

C. Identification Methods 

Gait identification was performed using 4 common methods 

found in the literature: Euclidean distance (ED), cosine 

similarity (CS), random forest (RF), and support vector 

machine (SVM) classifiers [12], [21], [45]–[49]. Those 

methods can further be divided into two categories, distance 

 
Fig. 2. Visualization of the amount of data split into a probe and 

gallery for three split methods. 70/30 data is split as 70% gallery 

and 30% probe. Day 1 data is split as 50% gallery and probe. 

Trial 1 data is split as 5.88% gallery and 94.12% probe. 

 

based identification (DBI) and model-based identification 

(MBI). Both categories used all 74 kinematic variables 

segmented by our three methods of splitting trials into galleries 

and probes. Regarding DBI, ED was calculated simply as the 

L2 norm between two vectors (kinematic variables) and CS was 

calculated as the normalized dot product between two vectors 

(kinematic variables). We also present DBI accuracy as Rank 

1, Rank 5, and Rank 10 (Table 1 and Fig. 3). Each rank 

represents the most similar, as well as a pool of the 5 and 10 

most similar comparisons, to make a true or false decision about 

the correct attribution of each probe trial to a gallery trial, 

respectively. Regarding MBI, when applying RF and SVM, we 

used public R packages including random Forest, stats, and 

e1071 along with custom functions found in our supplementary 

material [48]–[50]. Our two MBI methods only contain Rank 1 

accuracy. 

III. RESULTS 

Overall, subject identification was remarkably accurate 

considering the intended simplicity of our approach (Table 1 

and Fig. 3). Out of the 24 identification combinations noted in 

Table 1, only 4 were below 70% accuracy, 7 were between 70-

90% accuracy, and 13 were above 90% accuracy. Of the 13 

results resting above 90% accuracy, 5 reached at least 98% 

accuracy. Unsurprisingly, accuracy decreases greatly as the size 

of our gallery trials decreases, more so when using DBI 

compared to MBI. In terms of the 70/30 split, the best approach 

was CS Rank 5, Rank 10, and SVM, followed by ED rank 5 and 

Rank 10, RF, CS Rank 1, and finally ED Rank 1. In terms of 

the Day 1 split, the best approach was CS Rank 10 and RF, 

followed by SVM, ED Rank 10, CS Rank 5, ED Rank 5, CS 

Rank 1, and ED Rank 1. In terms of the smallest gallery from 

Trial 1, the best approach was CS Rank 10, followed by CS 

Rank 5, SVM, ED Rank 10, RF, ED Rank 5, ED Rank 10, and  
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Table 1. Correct identification accuracy per data split for Euclidean distance (ED), cosine similarity (CS) random forest (RF) and 

support vector machine learning (SVM). 

Split 

ED 

Rank 1 

ED 

Rank 5 

ED 

Rank 10 

CS 

Rank 1 

CS 

Rank 5 

CS 

Rank 10 RF SVM 

70/30 93.21% 98.15% 98.15% 93.83% 99.38% 99.38% 96.91% 99.38% 

Day 1 68.89% 88.52% 92.59% 80.37% 91.48% 95.93% 95.93% 94.74% 

Trial 1 46.27% 65.29% 77.84% 60.78% 84.11% 88.43% 75.88% 82.55% 

 

Fig. 3. Correct identification accuracy per data split for 

Euclidean distance (ED), cosine similarity (CS) random forest 

(RF) and support vector machine learning (SVM). Dashed 

horizontal line clarifies 90% accuracy. 

 

ED Rank 1. ED Rank 1 always had the worst performance 

compared to all other DBI and MBI approaches. 

IV. DISCUSSION 

In this study, we demonstrated that relatively simple methods 

of data identification combined with basic gait descriptors 

effectively distinguishing between individuals. We applied DBI 

and MBI pattern recognition to spatiotemporal characteristics 

derived from thirty healthy young adults walking on an indoor 

track wearing IMUs. Cosine similarity was the better of the two 

DBI methods reaching 99.38% accuracy when using Rank 5 & 

10. Furthermore, our results showed near-perfect accuracy 

(99.38%) when the SVM classifier was trained on 70% of the 
data and probed with the remaining 30%. As we reduced the 

size of our gallery set, identification accuracy decreased, but 

MBI approaches proved more robust in handling such 

reductions. 

 

A. Comparisons to Previous Literature 

Our study's results are consistent with or surpass previous 

literature focusing on identifying individuals based on walking 

features. We outperformed silhouette-based identification in 

some cases [17], [19], [21], [51]–[53]. Compared to a Hidden 

Markov Model, Trial 1 MBI performed better than all but four 

of twelve experimental probes [51]. In addition, accurate 

silhouette identification deteriorated as the probe viewing angle 

becomes more unlike the gallery angle [17], [20]. Viewing 

angle is an issue avoided by using full body motion capture in 

our study. The viewing angle issue can also occur using 

markerless kinematics-based identification [22]. We also 

observed robust identification across days, which can plague 

silhouette identification due to changes in clothing. One paper 

collected gait data four times over two months and achieved a 

best Rank 1 performance of 63%, a value lower than all our Day 

1 metrics [21]. In addition, six of eight of our methods were 

better than their best top 5% performance (88%) as well [21]. 

 

A more appropriate comparison to previous literature includes 

our ability to exceed the expected accuracy of at least 70% 

compared to studies using similar kinematic variables [14], 

[22]–[25], [32]. For example, one study applied joint angle 

trajectories with ED on two datasets to reach 73% and 42% 

accuracy [23]. The former result is surpassed by our ED Rank 

1 at the 70/30 split (93.21%) and the latter is surpassed by our 

Day 1 (68.89%) and Trial 1 (46.27%) ED Rank 1 accuracy. 

Another study used 41 lower body features to achieve 88.78% 

accuracy using SVM, only higher than our Trial 1 SVM 

(82.55%) but not Day 1 (94.74%) or 70/30 SVM (99.38%) [14]. 
Finally, our results were comparable to two studies with more 

complex data manipulations and many more variables that 

achieved a very high accuracy of at least 99.5% [15], [27]. We 

further emphasize that our model is more generalizable because 

we use an intuitive approach that remains grounded on direct 

kinematic measurements and potentially quicker to compute 

through basic gait features. In addition, the intuitiveness of this 

paper lends itself to support the peculiar ability to recognize 

friends and family by their gait at a far enough distance where 

facial features, clothing, or clear vision may be unreliable.  

 

As anticipated, identification becomes more challenging with a 

smaller gallery. Nevertheless, even with less than 6% of our 

data used for gallery (Trial 1), we achieved over 80% accuracy 

using CS and SVM, which is remarkable. Splitting our data in 

half (Day 1), all but one method was at least 80% accurate. 

Additionally, our findings showed excellent accuracy (over 

90%) when using a gallery from the first day's data (Day 1) and 

probing on the second day, addressing the challenges of multi-

day identification [19], [21]. However, it is worth noting that 

our study investigated gait with a 7-day gap, while other studies 

spanned months or even one year, potentially allowing for more 

significant natural gait changes [19], [21], [54]. Inter-day 

identification suggests that gait is inherently variable but still 

contains consistent characteristics or a unique "gaitprint”. 

 

B. Limitations 

Consistent with the limitations of other identification methods 

that require a designated space for equipping participants and 

capturing data (i.e., fingerprinting), we also required the 

participant to come into the lab to wear equipment that is 

typically not available to the public. We hope, however, that the 

development of markerless motion capture can be used to 
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provide detailed accounts of the entire body as seen in this 

report in a more covert manner. Advancements in markerless 

motion capture technology that can calculate reliable and 

accurate gait kinematics will permit highly accurate, yet 

surreptitious person identification based on how we walk. 

Coupled with the present study’s ability to accurately detect 

individuals based on gait, we will then be able to knock out two 

main problems of gait identification. The first issue is 

quantifying gait in a natural environment without 

instrumentation and the second issue is the currently worked on 

challenge of extracting gait kinematics due to the limitations of 

videography [12], [22], [34].  

 

C. Future Directions 

Future studies in gait identification aim to achieve perfect 

identification accuracy by further refining the motion capture 

and kinematic-based perspective. While this paper focused on 

linear measures (capturing the central tendency and the 

magnitude of variation) of angular and spatiotemporal gait 

features as proof of concept, there could be room for 

improvement by incorporating additional variables into the 

identification parameters. Further refinement may also be 

achieved by swapping out, or selecting, the most predictive gait 

characteristics for identification. For example, the weakest four 

70/30 SVM predictors (% Stance and % Swing) could be 
replaced with other gait descriptors or removed entirely. This 

may lead to a more accurate set of gait measures and potentially 

increase precision, although it would provide little novelty. 

 

Currently, we are exploring the value of incorporating nonlinear 

measures (capturing the temporal structure of variation) as 

additional gait features considering the importance of 

movement variability. However, some nonlinear analysis 

methods require a large number of strides for accurate results, 

which are not feasible in stationary camera settings where the 

pedestrian may walk in and out of the capture space. 

Nonetheless, related work from our lab provided evidence 

supporting the replacement of certain nonlinear analyses with 

reliable results using as few as 64 data points [30]. While this 

reduction still represents a significant number of strides 

depending on the identification space and population, we 

anticipate that nonlinear analyses will become useful predictors 

for identifying individuals in the near future [55]. Specifically, 

the particular structure of trial-to-trial variability may indicate 

individual uniqueness and provide insights into subtle 

coordination changes that reveal a person's identity. Our future 

capitalization on more nuanced measures of gait variability, 

rather than standard deviations, is expected to improve 

identification accuracy. The importance of nonlinear identifiers 

is supported by literature demonstrating their usefulness when 

investigating gait in different populations [7], [56]–[58]. 

Furthermore, a wider range of machine learning classifiers is 

being investigated, and the importance of variables in machine 

learning outcomes is being studied at present. 

 

D. Significance 

Our results clearly suggested that a person's identity is indeed 

linked to gait patterns during overground walking. Our 

predictions ultimately rested on the primacy of movement 

variability in forming unique gaitprints. Consistent with that 

idea, variability measures were consistently among the most 

important parameters for MBI. Even at the most basic level of 

measurable variability, person identification has been 

strengthened. In addition, the method outlined here is 

computationally efficient. Because we chose easily 

conceptualized gait descriptors instead of complex 

transformations of our data, our 74 variables were quickly 

calculated and were ready for use in DBI and MBI applications. 

An efficient research team should be able to execute a quick 

pipeline (i.e., equip the participant with IMUs, calibrate the 

sensors, collect a short walking trial, export the data, apply 

automated scripts) for registration within 10-15 minutes. 

 

In addition, our approach stands out from several others by 

virtue of a few secondary topics that are worth mentioning. 

First, the use of IMUs eliminated the challenges of camera 

viewpoint, clothing type, lens distortions, or shadows that could 

hinder identification performance. Second, our study benefited 

from a less constrained walking path. While many gait 

identification studies focused on capturing a few strides along 

a short, straight path or treadmill, we collected data from 

overground walking on an indoor track, encompassing different 

distances, curves, walking speeds, and number of strides [14], 
[15], [21]–[23], [45], [54], [59], [60]. Finally, our basic 

spatiotemporal variables can be visually described without 

difficulty, highlighting the observable differences that make 

two or more individuals distinguishable based on gait metrics. 

V. CONCLUSION 

Our study provided evidence that gait, and its variability, can 

serve as a distinguishing feature in humans. With four simple 

identification algorithms, we presented an easily 

understandable method for differentiating between individuals. 

We achieved near-perfect identification accuracy in some 

cases, but also observed deteriorating accuracy as our gallery 

size decreased. In the future, nonlinear analysis methods and 

other machine learning techniques are expected to bridge the 

gap between current error rates and achieving 100% human 

identification accuracy. 
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