[1] T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E.
Mellios, and J. Zhang, “Overview of Millimeter Wave Communications for
Fifth-Generation (5G) Wireless Networks-With a Focus on Propagation
Models,” IEEE Transactions on Antennas and Propagation, vol. 65,
no. 12. Institute of Electrical and Electronics Engineers Inc., pp.
6213–6230, Dec. 01, 2017. doi: 10.1109/TAP.2017.2734243.
[2] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile
broadband systems,” IEEE Commun. Mag., vol. 49, no. 6, pp.
101–107, Jun. 2011, doi: 10.1109/MCOM.2011.5783993.
[3] T. S. Rappaport et al., “Millimeter wave mobile
communications for 5G cellular: It will work!,” IEEE Access,
vol. 1, pp. 335–349, 2013, doi: 10.1109/ACCESS.2013.2260813.
[4] S. Geng, J. Kivinen, X. Zhao, and P. Vainikainen,
“Millimeter-wave propagation channel characterization for short-range
wireless communications,” IEEE Trans. Veh. Technol., vol. 58,
no. 1, pp. 3–13, 2009, doi: 10.1109/TVT.2008.924990.
[5] N. P. Narekar and D. M. Bhalerao, “A survey on obstacles for 5G
communication,” in International Conference on Communication and
Signal Processing, ICCSP, Institute of Electrical and Electronics
Engineers Inc., Nov. 2015, pp. 831–835. doi:
10.1109/ICCSP.2015.7322610.
[6] Z. A. Shamsan, “Rainfall and Diffraction Modeling for
Millimeter-Wave Wireless Fixed Systems,” IEEE Access, vol. 8,
pp. 212961–212978, 2020, doi: 10.1109/ACCESS.2020.3040624.
[7] G. R. Maccartney, J. Zhang, S. Nie, and T. S. Rappaport, “Path
loss models for 5G millimeter wave propagation channels in urban
microcells,” in GLOBECOM - IEEE Global Telecommunications
Conference, Institute of Electrical and Electronics Engineers Inc.,
2013, pp. 3948–3953. doi: 10.1109/GLOCOM.2013.6831690.
[8] K. W. Kim, M. D. Kim, J. Lee, J. J. Park, Y. K. Yoon, and Y. J.
Chong, “Millimeter-wave diffraction-loss model based on over-rooftop
propagation measurements,” ETRI J., vol. 42, no. September 2019,
pp. 827–836, 2020, doi: 10.4218/etrij.2019-0411.
[9] T. S. Rappaport, G. R. MacCartney, S. Sun, H. Yan, and S. Deng,
“Small-Scale, Local Area, and Transitional Millimeter Wave Propagation
for 5G Communications,” IEEE Trans. Antennas Propag., vol. 65,
no. 12, pp. 6474–6490, Dec. 2017, doi: 10.1109/TAP.2017.2734159.
[10] P. Zhang, B. Yang, C. Yi, H. Wang, and X. You,
“Measurement-Based 5G Millimeter-Wave Propagation Characterization in
Vegetated Suburban Macrocell Environments,” IEEE Trans. Antennas
Propag., vol. 68, no. 7, pp. 5556–5567, 2020, doi:
10.1109/TAP.2020.2975365.
[11] M. K. Samimi and T. S. Rappaport, “Local multipath model
parameters for generating 5G millimeter-wave 3GPP-like channel impulse
response,” in 10th European Conference on Antennas and
Propagation, EuCAP, Institute of Electrical and Electronics Engineers
Inc., May 2016. doi: 10.1109/EuCAP.2016.7481410.
[12] H. M. Rahim, C. Y. Leow, T. A. Rahman, A. Arsad, and M. A.
Malek, “Foliage Attenuation Measurement at Millimeter Wave Frequencies
in Tropical Vegetation,” in IEEE 13th Malaysia International
Conference on Communications, Malaysia, 2017, pp. 241–246.
[13] Z. Qingling and J. Li, “Rain Attenuation in Millimeter Wave
Ranges,” in 7th International Symposium on Antennas, Propagation
& EM Theory, 2006.
[14] W. Roh et al., “Millimeter-Wave Beamforming as an
Enabling Technology for 5G Cellular Communications: Theoretical
Feasibility and Prototype Results,” IEEE Commun. Mag., vol. 52,
no. 2, pp. 106–113, 2014.
[15] Y. N. R. Li, B. Gao, X. Zhang, and K. Huang, “Beam Management
in Millimeter-Wave Communications for 5G and beyond,” IEEE
Access, vol. 8, pp. 13282–13293, 2020, doi:
10.1109/ACCESS.2019.2963514.
[16] Y. Azar et al., “28 GHz Propagation Measurements for
Outdoor Cellular Communications Using Steerable Beam Antennas in New
York City,” in IEEE International Conference on Communications
(ICC), 2013, pp. 5143–5147.
[17] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta,
“Massive MIMO for next generation wireless systems,” IEEE
Commun. Mag., vol. 52, no. 2, pp. 186–195, 2014, doi:
10.1109/MCOM.2014.6736761.
[18] J. N. Murdock, E. Ben-Dor, Y. Qiao, J. I. Tamir, and T. S.
Rappaport, “A 38 GHz Cellular Outage Study for an Urban Outdoor Campus
Environment,” in IEEE Wireless Communications and Networking
Conference, IEEE, 2012, pp. 3085–3090.
[19] E. Bruce and A. C. Beck, “Experiments with Directivity
Steering for Fading Reduction,” Bell Syst. Tech. J., vol. 14,
no. 2, pp. 195–210, 1935, doi: 10.1002/j.1538-7305.1935.tb00412.x.
[20] S. Oh, S. Seo, M. Yoon, C. Oh, E. Kim, and Y. Kim, “A
Broadband Microstrip Antenna Array for LMDS Applications,”Microwave and Optical Technology Letters, vol. 32, no. 1, pp.
35-37, 2002.
[21] K. Wincza and S. Gruszczynski, “Microstrip antenna arrays fed
by a series-parallel slot-coupled feeding network,” IEEE Antennas
Wirel. Propag. Lett., vol. 10, pp. 991–994, 2011, doi:
10.1109/LAWP.2011.2167491.
[22] Z. Chen and S. Otto, “A Taper Optimization for Pattern
Synthesis of Microstrip Series-Fed Patch Array Antennas,” in 2nd
European Wireless Technology Conference, 2009, pp. 160–163.
[23] P. A. Dzagbletey, K. S. Kim, W. J. Byun, and Y. B. Jung,
“Stacked microstrip linear array with highly suppressed side-lobe
levels and wide bandwidth,” IET Microwaves, Antennas Propag.,
vol. 11, no. 1, pp. 17–22, Jan. 2017, doi: 10.1049/iet-map.2016.0161.
[24] P. A. Dzagbletey and Y. B. Jung, “Stacked microstrip linear
array for millimeter-wave 5G baseband communication,” IEEE
Antennas Wirel. Propag. Lett., vol. 17, no. 5, pp. 780–783, May 2018,
doi: 10.1109/LAWP.2018.2816258.
[25] M. Khalily, R. Tafazolli, T. A. Rahman, and M. R. Kamarudin,
“Design of Phased Arrays of Series-Fed Patch Antennas with Reduced
Number of the Controllers for 28-GHz mm-Wave Applications,” IEEE
Antennas Wirel. Propag. Lett., vol. 15, pp. 1305–1308, 2016, doi:
10.1109/LAWP.2015.2505781.
[26] C. C. Chang, R. H. Lee, and T. Y. Shih, “Design of a beam
switching/steering butler matrix for phased array system,” IEEE
Trans. Antennas Propag., vol. 58, no. 2, pp. 367–374, Feb. 2010, doi:
10.1109/TAP.2009.2037693.
[27] J. Z. Cao and F. C. Chen, “Design of Continuously Steerable
Nolen Matrix-Based Beamforming Networks Using Tunable Phase Shifters,”2022 Int. Conf. Microw. Millim. Wave Technol. ICMMT 2022 - Proc.,
pp. 1–3, 2022, doi: 10.1109/ICMMT55580.2022.10023059.
[28] S. Z. Ibrahim and M. E. Bialkowski, “Wideband Butler Matrix in
Microstrip-Slot Technology,” in Asia Pacific Microwave
Conference, IEEE, 2009, pp. 2104–2107.
[29] G. Breed, “Transmission Line and Lumped Element Quadrature
Couplers,” High Frequency Electronics, pp. 44–48, 2009.
[30] X. Wang, X. Fang, M. Laabs, and D. Plettemeier, “Compact 2-D
multibeam array antenna fed by planar cascaded butler matrix for
millimeter-wave communication,” IEEE Antennas Wirel. Propag.
Lett., vol. 18, no. 10, pp. 2056–2060, 2019, doi:
10.1109/LAWP.2019.2937254.
[31] D. Wang, E. Polat, H. Tesmer, H. Maune, and R. Jakoby,
“Switched and Steered Beam End-Fire Antenna Array Fed by Wideband
Via-Less Butler Matrix and Tunable Phase Shifters Based on Liquid
Crystal Technology,” IEEE Trans. Antennas Propag., vol. 70, no.
7, pp. 5383–5392, 2022, doi: 10.1109/TAP.2022.3142334.
[32] H. So et al., “Staircase Array Antenna with Stacked
Butler Matrix for Concurrent Multi-Beams,” IEEE Access, vol. 11,
no. July, pp. 76638–76646, 2023, doi: 10.1109/ACCESS.2023.3297659.
[33] A. Abhishek, Z. Zeya, P. Suraj, and R. K. Badhai, “Design of
beam steering antenna for 5G at 28GHz using butler matrix,” Proc.
2020 Int. Conf. Comput. Commun. Secur. ICCCS 2020, vol. 79, pp. 28–31,
2020, doi: 10.1109/ICCCS49678.2020.9276492.
[34] K. Ding and A. Kishk, “Two-Dimensional Butler Matrix Concept
for Planar Array,” IEEE MTT-S Int. Microw. Symp. Dig., vol.
2018-June, pp. 632–635, 2018, doi: 10.1109/MWSYM.2018.8439616.
[35] B. W. Xu, Y. Yang, S. Y. Zheng, and W. Che, “Single-/Dual-Beam
Switchable Beamforming Network Based on Phase-Shifter-Relaxed 4 × 4
Nolen Matrix,” IEEE Trans. Antennas Propag., vol. 72, no. 1, pp.
518–530, 2024, doi: 10.1109/TAP.2023.3326833.
[36] N. S. Mohd Suhaimi and N. M. Mahyuddin, “Review of Switched
Beamforming Networks for Scannable Antenna Application towards Fifth
Generation (5G) Technology,” Int. J. Integr. Eng., vol. 12, no.
6, pp. 62–70, 2020, doi: 10.30880/ijie.2020.12.06.008.
[37] J. Z. Cao and F. C. Chen, “A Tunable Nolen Matrix Based on
Reconfigurable Phase Shifters,” 13th Int. Symp. Antennas, Propag.
EM Theory, ISAPE 2021 - Proc., vol. Volume1, pp. 1–3, 2021, doi:
10.1109/ISAPE54070.2021.9752958.
[38] H. Ren, H. Zhang, Y. Jin, Y. Gu, and B. Arigong, “A Novel 2-D
3 X 3 Nolen Matrix for 2-D Beamforming Applications,” IEEE Trans.
Microw. Theory Tech., vol. 67, no. 11, pp. 4622–4631, 2019, doi:
10.1109/TMTT.2019.2917211.
[39] W. Rotman and R. F. Turner, “Wide-Angle Microwave Lens for
Line Source Applications,” IEEE Trans. Antennas Propag., vol.
11, no. 6, pp. 623–632, 1963, doi: 10.1109/TAP.1963.1138114.
[40] J. Li, C. He, H. Fan, and R. Jin, “Gain-Equalized Multibeam
Antenna Fed by a Compact Dual-Layer Rotman Lens at Ka-Band,” IEEE
Trans. Antennas Propag., vol. 70, no. 3, pp. 2307–2311, 2022.
[41] A. Azari, A. Skrivervik, and H. Aliakbarian, “Design of a
novel wide-angle Rotman lens beamformer for 5G mmWave applications,”Sci. Rep., vol. 14, no. 1, pp. 1–15, 2024, doi:
10.1038/s41598-024-51733-0.
[42] S. K. Karki et al., “Beam-Reconfigurable Antenna Based
on Vector Modulator and Rotman Lens on LTCC,” IEEE Access, vol.
9, pp. 52872–52882, 2021, doi: 10.1109/ACCESS.2021.3070037.
[43] E. Tolin, O. Litschke, S. Bruni, and F. Vipiana, “Compact
Extended Scan Range Antenna Array Based on Rotman Lens,” IEEE
Trans. Antennas Propag., vol. 67, no. 12, pp. 7356–7367, 2019, doi:
10.1109/TAP.2019.2935086.
[44] M. Heino, C. Icheln, J. Haarla, and K. Haneda, “PCB-Based
Design of a Beamsteerable Array with High-Gain Antennas and a Rotman
Lens at 28 GHz,” IEEE Antennas Wirel. Propag. Lett., vol. 19,
no. 10, pp. 1754–1758, Oct. 2020, doi: 10.1109/LAWP.2020.3017129.
[45] Y. Yu, H. Luyen, and N. Behdad, “A wideband millimeter-wave
rotman lens multibeam array using substrate integrated coaxial line
(SICL) technology,” IEEE Trans. Antennas Propag., vol. 69, no.
11, pp. 7532–7542, 2021, doi: 10.1109/TAP.2021.3090518.
[46] Y. J. Cheng et al., “Substrate integrated waveguide
(SIW) Rotman lens and its Ka-band multibeam array antenna
applications,” IEEE Trans. Antennas Propag., vol. 56, no. 8 II,
pp. 2504–2513, 2008, doi: 10.1109/TAP.2008.927567.
[47] J. W. Lian, Y. L. Ban, H. Zhu, and Y. J. Guo,
“Reduced-Sidelobe Multibeam Array Antenna Based on SIW Rotman Lens,”IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 1, pp. 188–192,
Jan. 2020, doi: 10.1109/LAWP.2019.2957509.
[48] K. Tekkouk, M. Ettorre, L. Le Coq, and R. Sauleau, “Multibeam
SIW Slotted Waveguide Antenna System Fed by a Compact Dual-Layer Rotman
Lens,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp.
504–514, Feb. 2016, doi: 10.1109/TAP.2015.2499752.
[49] Y. Liu, H. Yang, Z. Jin, F. Zhao, and J. Zhu, “A Multibeam
Cylindrically Conformal Slot Array Antenna Based on a Modified Rotman
Lens,” IEEE Trans. Antennas Propag., vol. 66, no. 7, pp.
3441–3452, 2018, doi: 10.1109/TAP.2018.2829816.
[50] J. Y. Deng, Y. Bin Liu, Z. Chen, and W. Lin, “Compact
Multibeam Antenna Using Miniaturized Slow-Wave Substrate-Integrated
Waveguide Rotman Lens for Satellite-Assisted Internet of Vehicles,”IEEE Internet Things J., vol. 11, no. 4, pp. 6848–6856, 2024,
doi: 10.1109/JIOT.2023.3313309.
[51] Q. Liang, B. Sun, and G. Zhou, “Miniaturization of Rotman Lens
Using Array Port Extension,” IEEE Antennas Wirel. Propag. Lett.,
vol. 22, no. 3, pp. 541–545, 2023, doi: 10.1109/LAWP.2022.3217399.
[52] R. K. Luneburg, Mathematical Theory of Optics. RI, USA:
Brown University Press, 1944.
[53] T. Whittaker, S. Zhang, C. Stevens, A. Powell, J. C.
Vardaxolgou, and W. G. Whittow, “3D Printing Materials and Techniques
for Antennas and Metamaterials,” IEEE Antennas Propag. Mag., pp.
2–12, 2022, doi: 10.1109/MAP.2022.3229298.
[54] B. Zhou, Y. Yang, H. Li, and T. J. Cui, “Beam-steering Vivaldi
antenna based on partial Luneburg lens constructed with composite
materials,” J. Appl. Phys., vol. 110, no. 8, Oct. 2011, doi:
10.1063/1.3651376.
[55] J. Yi, S. N. Burokur, and A. de Lustrac, “Conceptual design of
a beam steering lens through transformation electromagnetics,”Opt. Express, vol. 23, no. 10, p. 12942, May 2015, doi:
10.1364/oe.23.012942.
[56] N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Electromagnetic
design with transformation optics,” Proceedings of the IEEE,
vol. 99, no. 10. Institute of Electrical and Electronics Engineers Inc.,
pp. 1622–1633, 2011. doi: 10.1109/JPROC.2010.2089664.
[57] A. Bansal, H. Nagi, P. Febvre, and W. Whittow, “Bespoke
Luneburg Lens for Two-Dimensional Beam-Steering Antennas for SatComms on
the Move,” IEEE Int. Symp. Antennas Propag. Usn. Radio Sci.
Meet., pp. 733–734, 2023, doi: 10.1109/USNC-URSI52151.2023.10238014.
[58] A. Bansal, E. Mellios, H. Nagi, P. Febvre, and W. G. Whittow,
“Two-Dimensional Beam-Steering Lens Antenna with Fast Inter-Beam
Handover for PNT and Data Services for Satellite Communications on the
Move,” TechRxiv Prepr., 2023, doi:
https://doi.org/10.36227/techrxiv.24157410.v1.
[59] J. G. Marin and J. Hesselbarth, “Lens Antenna with Planar
Focal Surface for Wide-Angle Beam-Steering Application,” IEEE
Trans. Antennas Propag., vol. 67, no. 4, pp. 2757–2762, 2019.
[60] N. Nikolic and A. Hellicar, “Fractional Luneburg lens
antenna,” IEEE Antennas Propag. Mag., vol. 56, no. 5, pp.
116–130, Oct. 2014, doi: 10.1109/MAP.2014.6971923.
[61] O. Zetterstrom, N. J. G. Fonseca, and O. Quevedo-Teruel,
“Compact Half-Luneburg Lens Antenna Based on a Glide-Symmetric
Dielectric Structure,” IEEE Antennas Wirel. Propag. Lett., vol.
1, pp. 1–5, 2022, doi: 10.1109/LAWP.2022.3179639.
[62] H. Giddens, A. S. Andy, and Y. Hao, “Multimaterial 3-D Printed
Compressed Luneburg Lens for mm-Wave Beam Steering,” IEEE
Antennas Wirel. Propag. Lett., vol. 20, no. 11, pp. 2166–2170, 2021,
doi: 10.1109/LAWP.2021.3109591.
[63] S. Zhang, R. K. Arya, S. Pandey, Y. Vardaxoglou, W. Whittow,
and R. Mittra, “3D-printed planar graded index lenses,” IET
Microwaves, Antennas Propag., vol. 10, no. 13, pp. 1411–1419, Oct.
2016, doi: 10.1049/iet-map.2016.0013.
[64] S. Zhang, R. K. Arya, W. G. Whittow, D. Cadman, R. Mittra, and
J. C. Vardaxoglou, “Ultra-Wideband Flat Metamaterial GRIN Lenses
Assisted with Additive Manufacturing Technique,” IEEE Trans.
Antennas Propag., vol. 69, no. 7, pp. 3788–3799, Jul. 2021, doi:
10.1109/TAP.2020.3044586.
[65] W. Shao and Q. Chen, “2-D Beam-Steerable Generalized Mikaelian
Lens with Unique Flat-Shape Characteristic,” IEEE Antennas Wirel.
Propag. Lett., vol. 20, no. 10, pp. 2033–2037, 2021, doi:
10.1109/LAWP.2021.3102316.
[66] S. Jain, M. Abdel-Mageed, and R. Mittra, “Flat-lens design
using field transformation and its comparison with those based on
transformation optics and ray optics,” IEEE Antennas Wirel.
Propag. Lett., vol. 12, pp. 777–780, 2013, doi:
10.1109/LAWP.2013.2270946.
[67] L. Z. Song, M. Ansari, P. Y. Qin, S. Maci, J. Du, and Y. J.
Guo, “Two-Dimensional Wide-Angle Multibeam Flat GRIN Lens with a High
Aperture Efficiency,” IEEE Trans. Antennas Propag., vol. 71, no.
10, pp. 8018–8029, 2023, doi: 10.1109/TAP.2023.3298143.
[68] A. Bansal, C. J. Panagamuwa, and W. Whittow, “Novel Design
Methodology for 3D-Printed Lenses for Travelling Wave Antennas,”IEEE Open J. Antennas Propag., vol. 4, no. January, pp. 196–206,
2023, doi: 10.1109/OJAP.2023.3243408.
[69] Y. Luo and Z. N. Chen, “A Scanning Angle Range Enhanced Phased
Array Antenna Using Concave-Convex Lens,” Proc. 2018 IEEE Int.
Conf. Serv. Oper. Logist. Informatics, SOLI 2018, pp. 17–20, 2018,
doi: 10.1109/SOLI.2018.8476789.
[70] A. O. Diallo, R. Czarny, B. Loiseaux, and S. Hole, “Comparison
between a Thin Lens Antenna Made of Structured Dielectric Material and
Conventional Lens Antennas, in Q-Band in a Compact Volume,” IEEE
Antennas Wirel. Propag. Lett., vol. 17, no. 2, pp. 307–310, Feb. 2018,
doi: 10.1109/LAWP.2017.2787789.
[71] M. R. D. Kodnoeih, Y. Letestu, R. Sauleau, E. M. Cruz, and A.
Doll, “Compact folded fresnel zone plate lens antenna for mm-wave
communications,” IEEE Antennas Wirel. Propag. Lett., vol. 17,
no. 5, pp. 873–876, May 2018, doi: 10.1109/LAWP.2018.2820420.
[72] J. M. Monkevich and G. P. Le Sage, “Design and Fabrication of
a Custom-Dielectric Fresnel Multi-Zone Plate Lens Antenna Using Additive
Manufacturing Techniques,” IEEE Access, vol. 7, pp.
61452–61460, 2019, doi: 10.1109/ACCESS.2019.2916077.
[73] G. B. Wu, Y. S. Zeng, K. F. Chan, S. W. Qu, and C. H. Chan,
“3-D Printed Circularly Polarized Modified Fresnel Lens Operating at
Terahertz Frequencies,” IEEE Trans. Antennas Propag., vol. 67,
no. 7, pp. 4429–4437, Jul. 2019, doi: 10.1109/TAP.2019.2908110.
[74] Q. Liao, N. J. G. Fonseca, M. Camacho, A. Palomares-Caballero,
F. Mesa, and O. Quevedo-Teruel, “Ray-Tracing Model for Generalized
Geodesic-Lens Multiple-Beam Antennas,” IEEE Trans. Antennas
Propag., vol. 71, no. 3, pp. 2640–2651, 2023, doi:
10.1109/TAP.2022.3233643.
[75] O. Quevedo-Teruel et al., “Geodesic Lens Antennas for
5G and beyond,” IEEE Commun. Mag., vol. 60, no. 1, pp. 40–45,
2022, doi: 10.1109/MCOM.001.2100545.
[76] I. Munina, I. Grigoriev, G. O’Donnell, and D. Trimble, “A
Review of 3D Printed Gradient Refractive Index Lens Antennas,”IEEE Access, vol. 11, no. December 2022, pp. 8790–8809, 2023,
doi: 10.1109/ACCESS.2023.3239782.
[77] A. Bansal, C. J. Panagamuwa, and W. G. Whittow, “Simplified
Design Methodology for RF Dielectric Homogeneous and Graded Index
Lenses,” in IEEE Microwave, Antennas and Propagation Conference
(MAPCON), Ahmedabad, India, 2023.
[78] Y. J. Guo, M. Ansari, R. W. Ziolkowski, and N. J. G. Fonseca,
“Quasi-Optical Multi-Beam Antenna Technologies for B5G and 6G mmWave
and THz Networks: A Review,” IEEE Open J. Antennas Propag., vol.
2, no. May, pp. 807–830, 2021, doi: 10.1109/OJAP.2021.3093622.
[79] S. Huang, K. Y. Chan, and R. Ramer, “All 3-D Printed Antennas
Based on Phase Velocity Control for Beam Steering and Size Reduction
with Low Cost,” IEEE Trans. Antennas Propag., vol. 70, no. 3,
pp. 1776–1786, 2022, doi: 10.1109/TAP.2021.3118777.
[80] M. U. Afzal, K. P. Esselle, and M. N. Y. Koli, “A
Beam-Steering Solution with Highly Transmitting Hybrid Metasurfaces and
Circularly Polarized High-Gain Radial-Line Slot Array Antennas,”IEEE Trans. Antennas Propag., vol. 70, no. 1, pp. 365–377, 2022,
doi: 10.1109/TAP.2021.3111522.
[81] H. Lei et al., “A Low-Profile Risley-Prism-Based 2-D
Beam-Scanning Circularly Polarized Folded Transmitarray Antenna at
Ku-Band,” IEEE Trans. Antennas Propag., vol. 71, no. 7, pp.
6173–6178, 2023, doi: 10.1109/TAP.2023.3269102.
[82] M. U. Afzal, L. Matekovits, K. P. Esselle, and A. Lalbakhsh,
“Beam-scanning antenna based on near-electric field phase
transformation and refraction of electromagnetic wave through dielectric
structures,” IEEE Access, vol. 8, pp. 199242–199253, 2020, doi:
10.1109/ACCESS.2020.3033284.
[83] M. Ettorre, F. F. Manzillo, M. Casaletti, R. Sauleau, L. Le
Coq, and N. Capet, “Continuous Transverse Stub Array for Ka-Band
Applications,” IEEE Trans. Antennas Propag., vol. 63, no. 11,
pp. 4792–4800, 2015, doi: 10.1109/TAP.2015.2479243.
[84] M. Ettorre, R. Sauleau, and L. Le Coq, “Multi-beam multi-layer
leaky-wave SIW pillbox antenna for millimeter-wave applications,”IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1093–1100,
Apr. 2011, doi: 10.1109/TAP.2011.2109695.
[85] T. Potelon, M. Ettorre, L. Le Coq, T. Bateman, J. Francey, and
R. Sauleau, “Reconfigurable CTS Antenna Fully Integrated in PCB
Technology for 5G Backhaul Applications,” IEEE Trans. Antennas
Propag., vol. 67, no. 6, pp. 3609–3618, 2019, doi:
10.1109/TAP.2019.2902644.
[86] J. L. Volakis, Antenna Engineering Handbook.
McGraw-Hill, 2007. [Online]. Available:
www.digitalengineeringlibrary.com
[87] D. R. Jackson, C. Caloz, and T. Itoh, “Leaky-Wave Antennas,”Proc. IEEE, vol. 100, no. 7, pp. 2194–2206, 2012.
[88] F. Monticone and A. Alù, “Leaky-wave theory, techniques, and
applications: From microwaves to visible frequencies,” Proc.
IEEE, vol. 103, no. 5, pp. 793–821, May 2015, doi:
10.1109/JPROC.2015.2399419.
[89] G. Venanzoni, D. Mencarelli, A. Morini, M. Farina, and F.
Prudenzano, “Review of substrate integratedwaveguide circuits for
beam-forming networks working in x-band,” Applied Sciences
(Switzerland), vol. 9, no. 5. MDPI AG, pp. 1–19, 2019. doi:
10.3390/app9051003.
[90] K. Wu, M. Bozzi, and N. J. G. Fonseca, “Substrate Integrated
Transmission Lines: Review and Applications,” IEEE J.
Microwaves, vol. 1, no. 1, pp. 345–363, Jan. 2021, doi:
10.1109/jmw.2020.3034379.
[91] M. Bozzi, A. Georgiadis, and K. Wu, “Review of
substrate-integrated waveguide circuits and antennas,” IET
Microwaves, Antennas Propag., vol. 5, no. 8, pp. 909–920, Jun. 2011,
doi: 10.1049/iet-map.2010.0463.
[92] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd
Editio. New York, NY, USA: Wiley, 2005.
[93] D. K. Karmokar, S. L. Chen, D. Thalakotuna, P. Y. Qin, T. S.
Bird, and Y. J. Guo, “Continuous Backward-to-Forward Scanning 1-D
Slot-Array Leaky-Wave Antenna with Improved Gain,” IEEE Antennas
Wirel. Propag. Lett., vol. 19, no. 1, pp. 89–93, Jan. 2020, doi:
10.1109/LAWP.2019.2953927.
[94] S. Sengupta, D. R. Jackson, A. T. Almutawa, H. Kazemi, F.
Capolino, and S. A. Long, “A Cross-Shaped 2-D Periodic Leaky-Wave
Antenna,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp.
1289–1301, Mar. 2020, doi: 10.1109/TAP.2019.2948524.
[95] Y. Geng, J. Wang, Z. Li, Y. Li, M. Chen, and Z. Zhang,
“Dual-Beam and Tri-Band SIW Leaky-Wave Antenna with Wide Beam Scanning
Range including Broadside Direction,” IEEE Access, vol. 7, pp.
176361–176368, 2019, doi: 10.1109/ACCESS.2019.2957763.
[96] Z. Ahmed, M. H. Hoang, P. McEvoy, and M. J. Ammann,
“Millimetre-wave planar bruce array antenna,” in 2020
International Workshop on Antenna Technology, iWAT 2020, Institute of
Electrical and Electronics Engineers Inc., Feb. 2020. doi:
10.1109/iWAT48004.2020.1570608201.
[97] G. Bogdan, K. Godziszewski, Y. Yashchyshyn, C. H. Kim, and S.
B. Hyun, “Time-Modulated Antenna Array for Real-Time Adaptation in
Wideband Wireless Systems-Part I: Design and Characterization,”IEEE Trans. Antennas Propag., vol. 68, no. 10, pp. 6964–6972,
Oct. 2020, doi: 10.1109/TAP.2019.2902755.
[98] M. Wang, H. F. Ma, H. C. Zhang, W. X. Tang, X. R. Zhang, and T.
J. Cui, “Frequency-Fixed Beam-Scanning Leaky-Wave Antenna Using
Electronically Controllable Corrugated Microstrip Line,” IEEE
Trans. Antennas Propag., vol. 66, no. 9, pp. 4449–4457, Sep. 2018,
doi: 10.1109/TAP.2018.2845452.
[99] A. Bansal, C. J. Panagamuwa, and W. G. Whittow, “Full 360 °
beam steering millimetre-wave leaky-wave antennas coupled with bespoke
3D-printed dielectric lenses for 5G base stations,” Electron.
Lett., vol. 59, no. 8, pp. 5–7, 2023.
[100] A. Bansal, C. Panagamuwa, and W. Whittow, “Millimeter-Wave
Beam Steerable Slot Array Antenna Using an Inter-Digitated Capacitor
Based Corrugated SIW,” IEEE Trans. Antennas Propag., vol. 70,
no. 12, pp. 11761–11770, 2022, doi: 10.1109/TAP.2022.3211013.
[101] L. Y. Ma, N. Soin, M. H. M. Daut, and S. F. W. M. Hatta,
“Comprehensive Study on RF-MEMS Switches Used for 5G Scenario,”IEEE Access, vol. 7, pp. 107506–107522, 2019, doi:
10.1109/ACCESS.2019.2932800.
[102] T. Lou, X. X. Yang, H. Qiu, Q. Luo, and S. Gao, “Low-Cost
Electrical Beam-Scanning Leaky-Wave Antenna Based on Bent Corrugated
Substrate Integrated Waveguide,” IEEE Antennas Wirel. Propag.
Lett., vol. 18, no. 2, pp. 353–357, Feb. 2019, doi:
10.1109/LAWP.2019.2890995.
[103] I. Serhsouh, M. Himdi, H. Lebbar, and H. Vettikalladi,
“Reconfigurable SIW Antenna for Fixed Frequency Beam Scanning and 5G
Applications,” IEEE Access, vol. 8, pp. 60084–60089, 2020, doi:
10.1109/ACCESS.2020.2983001.
[104] D. K. Karmokar, K. P. Esselle, and S. G. Hay,
“Fixed-Frequency Beam Steering of Microstrip Leaky-Wave Antennas Using
Binary Switches,” IEEE Trans. Antennas Propag., vol. 64, no. 6,
pp. 2146–2154, Jun. 2016, doi: 10.1109/TAP.2016.2546949.
[105] A. Bansal, C. J. Panagamuwa, and W. G. Whittow, “Fixed
frequency beam‐steering using bow‐tie slot based dielectric filled
waveguide antenna array,” Electron. Lett., vol. 59, no. 13, pp.
1–3, 2023, doi: 10.1049/ell2.12864.
[106] J. L. Gómez-Tornero, R. Guzmán-Quirós, G. Goussetis, and S. K.
Podilchak, “Electronically-reconfigurable parallel-plate wave launchers
based on corrugated substrate integrated leaky waveguides with tunable
components,” in 46th European Microwave Conference, Institute of
Electrical and Electronics Engineers Inc., 2016, pp. 795–798. doi:
10.1109/EuMC.2016.7824463.
[107] D. Jiang et al., “Liquid crystal-based wideband
reconfigurable leaky wave X-band antenna,” IEEE Access, vol. 7,
pp. 127320–127326, 2019, doi: 10.1109/ACCESS.2019.2939097.
[108] Y. Yashchyshyn et al., “28 GHz Switched-Beam Antenna
Based on S-PIN Diodes for 5G Mobile Communications,” IEEE
Antennas Wirel. Propag. Lett., vol. 17, no. 2, pp. 225–228, Feb. 2018,
doi: 10.1109/LAWP.2017.2781262.
[109] N. Javanbakht, B. Syrett, R. E. Amaya, and J. Shaker, “A
Review of Reconfigurable Leaky-Wave Antennas,” IEEE Access, vol.
9. Institute of Electrical and Electronics Engineers Inc., pp.
94224–94238, 2021. doi: 10.1109/ACCESS.2021.3093775.
[110] D. G. Chen and K. W. Eccleston, “Substrate integrated
waveguide with corrugated wall,” in Proceedings of 2008 Asia
Pacific Microwave Conference, APMC 2008, 2008. doi:
10.1109/APMC.2008.4958218.
[111] K. W. Eccleston, “Mode analysis of the corrugated substrate
integrated waveguide,” IEEE Trans. Microw. Theory Tech., vol.
60, no. 10, pp. 3004–3012, 2012, doi: 10.1109/TMTT.2012.2209453.
[112] A. Bansal, C. J. Panagamuwa, and W. G. Whittow, “Conformal
Millimeter-Wave Corrugated Substrate Integrated Waveguide Slot Array
Antenna,” 2023 8th Int. Conf. Smart Sustain. Technol., pp. 1–4,
Jun. 2023, doi: 10.23919/SPLITECH58164.2023.10193713.
[113] Y. Lin, Y. Zhang, H. Liu, Y. Zhang, E. Forsberg, and S. He,
“A Simple High-Gain Millimeter-Wave Leaky-Wave Slot Antenna Based on a
Bent Corrugated SIW,” IEEE Access, vol. 8, pp. 91999–92006,
2020, doi: 10.1109/ACCESS.2020.2993999.
[114] D. Cho and H. Y. Lee, “Folded corrugated SIW (FCSIW) slot
antenna for backlobe suppression,” IEEE Antennas Wirel. Propag.
Lett., vol. 12, pp. 1276–1279, 2013, doi: 10.1109/LAWP.2013.2283535.
[115] K. W. Eccleston, “Half-mode corrugated substrate integrated
waveguide mode behavior,” in 2013 IEEE International Wireless
Symposium, IWS 2013, 2013. doi: 10.1109/IEEE-IWS.2013.6616708.
[116] U. Pandey, P. Singh, N. P. Gupta, R. Singh, and A. Bansal,
“Wideband leaky-wave antenna with dumbbell-shaped slots on substrate
integrated waveguides with twisted corrugations,” Electron.
Lett., vol. 59, no. 20, pp. 3–5, 2023, doi: 10.1049/ell2.12991.
[117] A. Bansal and W. G. Whittow, “Leaky Wave Antenna on a
Half-Mode Integrated Digitated Capacitor-based Corrugated Substrate
Integrated Waveguide with Tilted Vertical Slots,” in 2023 IEEE
Microwaves, Antennas, and Propagation Conference (MAPCON), IEEE, 2023,
pp. 1–4. doi: 10.1109/MAPCON58678.2023.10464096.
[118] A. Lai, T. Itoh, and C. Caloz, “Composite Right/Left-Handed
Transmission Line Metamaterials,” IEEE Microwave Magazine, pp.
34–50, 2004.
[119] A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental
Observations of a Left-Handed Material That Obeys Snell’s Law,”Phys. Rev. Lett., vol. 90, no. 13, p. 4, 2003, doi:
10.1103/PhysRevLett.90.137401.
[120] A. Dadgarpour, B. Zarghooni, B. S. Virdee, and T. A. Denidni,
“Beam tilting antenna using integrated metamaterial loading,”IEEE Trans. Antennas Propag., vol. 62, no. 5, pp. 2874–2879,
2014, doi: 10.1109/TAP.2014.2308516.
[121] A. Dadgarpour, B. Zarghooni, B. S. Virdee, and T. A. Denidni,
“One- and Two-Dimensional Beam-Switching Antenna for Millimeter-Wave
MIMO Applications,” IEEE Trans. Antennas Propag., vol. 64, no.
2, pp. 564–573, Feb. 2016, doi: 10.1109/TAP.2015.2508478.
[122] S. S. Bukhari, J. Vardaxoglou, and W. Whittow, “A
metasurfaces review: Definitions and applications,” Appl. Sci.,
vol. 9, no. 13, 2019, doi: 10.3390/app9132727.
[123] L. Boccia, I. Russo, G. Amendola, and G. Di Massa, “Tunable
frequency-selective surfaces for beam-steering applications,”Electron. Lett., vol. 45, no. 24, pp. 1213–1215, 2009, doi:
10.1049/el.2009.2577.
[124] S. Narayan and R. M. Jha, “Electromagnetic Techniques and
Design Strategies for FSS Structure Applications [Antenna Applications
Corner],” IEEE Antennas Propag. Mag., vol. 57, no. 5, pp.
135–158, Oct. 2015, doi: 10.1109/MAP.2015.2474867.
[125] A. Kesavan, M. Mantash, and T. A. Denidni, “Beam-switching
millimetre-wave antenna using cantilever-based FSSs,” IET
Microwaves, Antennas Propag., vol. 12, no. 13, pp. 2019–2024, Oct.
2018, doi: 10.1049/iet-map.2018.5017.
[126] A. Kesavan, M. Mantash, J. Zaid, and T. A. Denidni, “A
dual-plane beam-sweeping millimeter-wave antenna using reconfigurable
frequency selective surfaces,” IEEE Antennas Wirel. Propag.
Lett., vol. 17, no. 10, pp. 1832–1836, Oct. 2018, doi:
10.1109/LAWP.2018.2867331.
[127] L. Y. Ji, Z. Y. Zhang, and N. W. Liu, “A Two-Dimensional
Beam-Steering Partially Reflective Surface (PRS) Antenna Using a
Reconfigurable FSS Structure,” IEEE Antennas Wirel. Propag.
Lett., vol. 18, no. 6, pp. 1076–1080, Jun. 2019, doi:
10.1109/LAWP.2019.2907641.
[128] W. Pan, C. Huang, P. Chen, M. Pu, X. Ma, and X. Luo, “A beam
steering horn antenna using active frequency selective surface,”IEEE Trans. Antennas Propag., vol. 61, no. 12, pp. 6218–6223,
2013, doi: 10.1109/TAP.2013.2280592.
[129] J. R. Reis et al., “FSS-Inspired Transmitarray for
Two-Dimensional Antenna Beamsteering,” IEEE Trans. Antennas
Propag., vol. 64, no. 6, pp. 2197–2206, 2016, doi:
10.1109/TAP.2016.2543802.
[130] G. H. Elzwawi, H. H. Elzwawi, M. M. Tahseen, and T. A.
Denidni, “Frequency selective surface-based switched-beamforming
antenna,” IEEE Access, vol. 6, pp. 48042–48050, Jul. 2018, doi:
10.1109/ACCESS.2018.2850808.
[131] C. Gu et al., “Dual-band electronically beam-switched
antenna using slot active frequency selective surface,” IEEE
Trans. Antennas Propag., vol. 65, no. 3, pp. 1393–1398, Mar. 2017,
doi: 10.1109/TAP.2016.2647578.
[132] A. Goudarzi, M. M. Honari, and R. Mirzavand, “A
Millimeter-Wave Fabry-Perot Cavity Antenna with Unidirectional Beam
Scanning Capability for 5G Applications,” IEEE Trans. Antennas
Propag., vol. 70, no. 3, pp. 1787–1796, 2022, doi:
10.1109/TAP.2021.3118796.
[133] A. Goudarzi, M. M. Honari, and R. Mirzavand, “A High-Gain
Leaky-Wave Antenna Using Resonant Cavity Structure with Unidirectional
Frequency Scanning Capability for 5G Applications,” IEEE Access,
vol. 9, pp. 138858–138865, 2021, doi: 10.1109/ACCESS.2021.3118286.
[134] S. Zahra et al., “Electromagnetic Metasurfaces and
Reconfigurable Metasurfaces: A Review,” Front. Phys., vol. 8,
pp. 1–16, Jan. 2021, doi: 10.3389/fphy.2020.593411.
[135] T. Li and Z. N. Chen, “Control of Beam Direction for
Substrate-Integrated Waveguide Slot Array Antenna Using Metasurface,”IEEE Trans. Antennas Propag., vol. 66, no. 6, pp. 2862–2869,
Jun. 2018, doi: 10.1109/TAP.2018.2823755.
[136] Y. Yin et al., “Design of a 2-bit Dual-Polarized
Reconfigurable Reflectarray With High Aperture Efficiency,” IEEE
Trans. Antennas Propag., vol. 72, no. 1, pp. 542–552, Jan. 2024, doi:
10.1109/TAP.2023.3326951.
[137] M. Bodehou, E. Martini, S. Maci, I. Huynen, and C. Craeye,
“Multibeam and Beam Scanning with Modulated Metasurfaces,” IEEE
Trans. Antennas Propag., vol. 68, no. 3, pp. 1273–1281, 2020, doi:
10.1109/TAP.2019.2944554.
[138] J. B. Gros, V. Popov, M. A. Odit, V. Lenets, and G. Lerosey,
“A Reconfigurable Intelligent Surface at mmWave Based on a Binary Phase
Tunable Metasurface,” IEEE Open J. Commun. Soc., vol. 2, no.
April, pp. 1055–1064, 2021, doi: 10.1109/OJCOMS.2021.3076271.
[139] Y. Zhang, Z. Han, S. Tang, S. Shen, C.-Y. Chiu, and R. Murch,
“A Highly Pattern-Reconfigurable Planar Antenna With 360° Single- and
Multi-Beam Steering,” IEEE Trans. Antennas Propag., vol. 70, no.
8, pp. 6490–6504, 2022.
[140] X. Wan et al., “Reconfigurable Sum and Difference
Beams Based on a Binary Programmable Metasurface,” IEEE Antennas
Wirel. Propag. Lett., vol. 20, no. 3, pp. 381–385, 2021, doi:
10.1109/LAWP.2021.3050808.
[141] A. Araghi et al., “Reconfigurable Intelligent Surface
(RIS) in the Sub-6 GHz Band: Design, Implementation, and Real-World
Demonstration,” IEEE Access, vol. 10, pp. 2646–2655, 2022, doi:
10.1109/ACCESS.2022.3140278.
[142] B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D.
F. Sievenpiper, “Scalar and tensor holographic artificial impedance
surfaces,” IEEE Trans. Antennas Propag., vol. 58, no. 10, pp.
3212–3221, 2010, doi: 10.1109/TAP.2010.2055812.
[143] B. Rana, S. S. Cho, and I. P. Hong, “Review Paper on Hardware
of Reconfigurable Intelligent Surfaces,” IEEE Access, vol. 11,
no. February, pp. 29614–29634, 2023, doi: 10.1109/ACCESS.2023.3261547.
[144] J. Rains et al., “High-Resolution Programmable
Scattering for Wireless Coverage Enhancement: An Indoor Field Trial
Campaign,” IEEE Trans. Antennas Propag., vol. 71, no. 1, pp.
518–530, 2023, doi: 10.1109/TAP.2022.3216555.
[145] A. Araghi, M. Khalily, P. Xiao, F. Wang, and R. Tafazolli,
“Systematic Design of a Holographic-Based Metasurface Reflector in the
Sub-6 GHz Band,” IEEE Antennas Wirel. Propag. Lett., vol. 21,
no. 10, pp. 1960–1964, 2022, doi: 10.1109/LAWP.2022.3186922.
[146] A. Bansal and W. Whittow, “Figuring out Impaired
Reconfigurable Intelligent Surfaces,” TechRxiv Prepr., 2024,
doi: 10.36227/techrxiv.171051649.95959056/v1.
[147] A. Araghi, M. Khalily, P. Xiao, and R. Tafazolli,
“Holographic-Based Leaky-Wave Structures: Transformation of Guided
Waves to Leaky Waves,” IEEE Microw. Mag., vol. 22, no. 6, pp.
49–63, 2021, doi: 10.1109/MMM.2021.3064118.
[148] Y. Wang, Q. Feng, X. Kong, H. Liu, J. Han, and L. Li,
“Multi-Feed Beam-Switchable Cylindrical Conformal Holographic
Metasurface Antenna,” IEEE Antennas Wirel. Propag. Lett., vol.
23, no. 3, pp. 970–974, 2023, doi: 10.1109/LAWP.2023.3340682.
[149] D. Kampouridou and A. Feresidis, “Tunable Multibeam
Holographic Metasurface Antenna,” IEEE Antennas Wirel. Propag.
Lett., vol. 21, no. 11, pp. 2264–2267, 2022, doi:
10.1109/LAWP.2022.3192977.