[1] T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios, and J. Zhang, “Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks-With a Focus on Propagation Models,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 12. Institute of Electrical and Electronics Engineers Inc., pp. 6213–6230, Dec. 01, 2017. doi: 10.1109/TAP.2017.2734243. [2] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag., vol. 49, no. 6, pp. 101–107, Jun. 2011, doi: 10.1109/MCOM.2011.5783993. [3] T. S. Rappaport et al., “Millimeter wave mobile communications for 5G cellular: It will work!,” IEEE Access, vol. 1, pp. 335–349, 2013, doi: 10.1109/ACCESS.2013.2260813. [4] S. Geng, J. Kivinen, X. Zhao, and P. Vainikainen, “Millimeter-wave propagation channel characterization for short-range wireless communications,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 3–13, 2009, doi: 10.1109/TVT.2008.924990. [5] N. P. Narekar and D. M. Bhalerao, “A survey on obstacles for 5G communication,” in International Conference on Communication and Signal Processing, ICCSP, Institute of Electrical and Electronics Engineers Inc., Nov. 2015, pp. 831–835. doi: 10.1109/ICCSP.2015.7322610. [6] Z. A. Shamsan, “Rainfall and Diffraction Modeling for Millimeter-Wave Wireless Fixed Systems,” IEEE Access, vol. 8, pp. 212961–212978, 2020, doi: 10.1109/ACCESS.2020.3040624. [7] G. R. Maccartney, J. Zhang, S. Nie, and T. S. Rappaport, “Path loss models for 5G millimeter wave propagation channels in urban microcells,” in GLOBECOM - IEEE Global Telecommunications Conference, Institute of Electrical and Electronics Engineers Inc., 2013, pp. 3948–3953. doi: 10.1109/GLOCOM.2013.6831690. [8] K. W. Kim, M. D. Kim, J. Lee, J. J. Park, Y. K. Yoon, and Y. J. Chong, “Millimeter-wave diffraction-loss model based on over-rooftop propagation measurements,” ETRI J., vol. 42, no. September 2019, pp. 827–836, 2020, doi: 10.4218/etrij.2019-0411. [9] T. S. Rappaport, G. R. MacCartney, S. Sun, H. Yan, and S. Deng, “Small-Scale, Local Area, and Transitional Millimeter Wave Propagation for 5G Communications,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6474–6490, Dec. 2017, doi: 10.1109/TAP.2017.2734159. [10] P. Zhang, B. Yang, C. Yi, H. Wang, and X. You, “Measurement-Based 5G Millimeter-Wave Propagation Characterization in Vegetated Suburban Macrocell Environments,” IEEE Trans. Antennas Propag., vol. 68, no. 7, pp. 5556–5567, 2020, doi: 10.1109/TAP.2020.2975365. [11] M. K. Samimi and T. S. Rappaport, “Local multipath model parameters for generating 5G millimeter-wave 3GPP-like channel impulse response,” in 10th European Conference on Antennas and Propagation, EuCAP, Institute of Electrical and Electronics Engineers Inc., May 2016. doi: 10.1109/EuCAP.2016.7481410. [12] H. M. Rahim, C. Y. Leow, T. A. Rahman, A. Arsad, and M. A. Malek, “Foliage Attenuation Measurement at Millimeter Wave Frequencies in Tropical Vegetation,” in IEEE 13th Malaysia International Conference on Communications, Malaysia, 2017, pp. 241–246. [13] Z. Qingling and J. Li, “Rain Attenuation in Millimeter Wave Ranges,” in 7th International Symposium on Antennas, Propagation & EM Theory, 2006. [14] W. Roh et al., “Millimeter-Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results,” IEEE Commun. Mag., vol. 52, no. 2, pp. 106–113, 2014. [15] Y. N. R. Li, B. Gao, X. Zhang, and K. Huang, “Beam Management in Millimeter-Wave Communications for 5G and beyond,” IEEE Access, vol. 8, pp. 13282–13293, 2020, doi: 10.1109/ACCESS.2019.2963514. [16] Y. Azar et al., “28 GHz Propagation Measurements for Outdoor Cellular Communications Using Steerable Beam Antennas in New York City,” in IEEE International Conference on Communications (ICC), 2013, pp. 5143–5147. [17] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, 2014, doi: 10.1109/MCOM.2014.6736761. [18] J. N. Murdock, E. Ben-Dor, Y. Qiao, J. I. Tamir, and T. S. Rappaport, “A 38 GHz Cellular Outage Study for an Urban Outdoor Campus Environment,” in IEEE Wireless Communications and Networking Conference, IEEE, 2012, pp. 3085–3090. [19] E. Bruce and A. C. Beck, “Experiments with Directivity Steering for Fading Reduction,” Bell Syst. Tech. J., vol. 14, no. 2, pp. 195–210, 1935, doi: 10.1002/j.1538-7305.1935.tb00412.x. [20] S. Oh, S. Seo, M. Yoon, C. Oh, E. Kim, and Y. Kim, “A Broadband Microstrip Antenna Array for LMDS Applications,”Microwave and Optical Technology Letters, vol. 32, no. 1, pp. 35-37, 2002. [21] K. Wincza and S. Gruszczynski, “Microstrip antenna arrays fed by a series-parallel slot-coupled feeding network,” IEEE Antennas Wirel. Propag. Lett., vol. 10, pp. 991–994, 2011, doi: 10.1109/LAWP.2011.2167491. [22] Z. Chen and S. Otto, “A Taper Optimization for Pattern Synthesis of Microstrip Series-Fed Patch Array Antennas,” in 2nd European Wireless Technology Conference, 2009, pp. 160–163. [23] P. A. Dzagbletey, K. S. Kim, W. J. Byun, and Y. B. Jung, “Stacked microstrip linear array with highly suppressed side-lobe levels and wide bandwidth,” IET Microwaves, Antennas Propag., vol. 11, no. 1, pp. 17–22, Jan. 2017, doi: 10.1049/iet-map.2016.0161. [24] P. A. Dzagbletey and Y. B. Jung, “Stacked microstrip linear array for millimeter-wave 5G baseband communication,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 5, pp. 780–783, May 2018, doi: 10.1109/LAWP.2018.2816258. [25] M. Khalily, R. Tafazolli, T. A. Rahman, and M. R. Kamarudin, “Design of Phased Arrays of Series-Fed Patch Antennas with Reduced Number of the Controllers for 28-GHz mm-Wave Applications,” IEEE Antennas Wirel. Propag. Lett., vol. 15, pp. 1305–1308, 2016, doi: 10.1109/LAWP.2015.2505781. [26] C. C. Chang, R. H. Lee, and T. Y. Shih, “Design of a beam switching/steering butler matrix for phased array system,” IEEE Trans. Antennas Propag., vol. 58, no. 2, pp. 367–374, Feb. 2010, doi: 10.1109/TAP.2009.2037693. [27] J. Z. Cao and F. C. Chen, “Design of Continuously Steerable Nolen Matrix-Based Beamforming Networks Using Tunable Phase Shifters,”2022 Int. Conf. Microw. Millim. Wave Technol. ICMMT 2022 - Proc., pp. 1–3, 2022, doi: 10.1109/ICMMT55580.2022.10023059. [28] S. Z. Ibrahim and M. E. Bialkowski, “Wideband Butler Matrix in Microstrip-Slot Technology,” in Asia Pacific Microwave Conference, IEEE, 2009, pp. 2104–2107. [29] G. Breed, “Transmission Line and Lumped Element Quadrature Couplers,” High Frequency Electronics, pp. 44–48, 2009. [30] X. Wang, X. Fang, M. Laabs, and D. Plettemeier, “Compact 2-D multibeam array antenna fed by planar cascaded butler matrix for millimeter-wave communication,” IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 10, pp. 2056–2060, 2019, doi: 10.1109/LAWP.2019.2937254. [31] D. Wang, E. Polat, H. Tesmer, H. Maune, and R. Jakoby, “Switched and Steered Beam End-Fire Antenna Array Fed by Wideband Via-Less Butler Matrix and Tunable Phase Shifters Based on Liquid Crystal Technology,” IEEE Trans. Antennas Propag., vol. 70, no. 7, pp. 5383–5392, 2022, doi: 10.1109/TAP.2022.3142334. [32] H. So et al., “Staircase Array Antenna with Stacked Butler Matrix for Concurrent Multi-Beams,” IEEE Access, vol. 11, no. July, pp. 76638–76646, 2023, doi: 10.1109/ACCESS.2023.3297659. [33] A. Abhishek, Z. Zeya, P. Suraj, and R. K. Badhai, “Design of beam steering antenna for 5G at 28GHz using butler matrix,” Proc. 2020 Int. Conf. Comput. Commun. Secur. ICCCS 2020, vol. 79, pp. 28–31, 2020, doi: 10.1109/ICCCS49678.2020.9276492. [34] K. Ding and A. Kishk, “Two-Dimensional Butler Matrix Concept for Planar Array,” IEEE MTT-S Int. Microw. Symp. Dig., vol. 2018-June, pp. 632–635, 2018, doi: 10.1109/MWSYM.2018.8439616. [35] B. W. Xu, Y. Yang, S. Y. Zheng, and W. Che, “Single-/Dual-Beam Switchable Beamforming Network Based on Phase-Shifter-Relaxed 4 × 4 Nolen Matrix,” IEEE Trans. Antennas Propag., vol. 72, no. 1, pp. 518–530, 2024, doi: 10.1109/TAP.2023.3326833. [36] N. S. Mohd Suhaimi and N. M. Mahyuddin, “Review of Switched Beamforming Networks for Scannable Antenna Application towards Fifth Generation (5G) Technology,” Int. J. Integr. Eng., vol. 12, no. 6, pp. 62–70, 2020, doi: 10.30880/ijie.2020.12.06.008. [37] J. Z. Cao and F. C. Chen, “A Tunable Nolen Matrix Based on Reconfigurable Phase Shifters,” 13th Int. Symp. Antennas, Propag. EM Theory, ISAPE 2021 - Proc., vol. Volume1, pp. 1–3, 2021, doi: 10.1109/ISAPE54070.2021.9752958. [38] H. Ren, H. Zhang, Y. Jin, Y. Gu, and B. Arigong, “A Novel 2-D 3 X 3 Nolen Matrix for 2-D Beamforming Applications,” IEEE Trans. Microw. Theory Tech., vol. 67, no. 11, pp. 4622–4631, 2019, doi: 10.1109/TMTT.2019.2917211. [39] W. Rotman and R. F. Turner, “Wide-Angle Microwave Lens for Line Source Applications,” IEEE Trans. Antennas Propag., vol. 11, no. 6, pp. 623–632, 1963, doi: 10.1109/TAP.1963.1138114. [40] J. Li, C. He, H. Fan, and R. Jin, “Gain-Equalized Multibeam Antenna Fed by a Compact Dual-Layer Rotman Lens at Ka-Band,” IEEE Trans. Antennas Propag., vol. 70, no. 3, pp. 2307–2311, 2022. [41] A. Azari, A. Skrivervik, and H. Aliakbarian, “Design of a novel wide-angle Rotman lens beamformer for 5G mmWave applications,”Sci. Rep., vol. 14, no. 1, pp. 1–15, 2024, doi: 10.1038/s41598-024-51733-0. [42] S. K. Karki et al., “Beam-Reconfigurable Antenna Based on Vector Modulator and Rotman Lens on LTCC,” IEEE Access, vol. 9, pp. 52872–52882, 2021, doi: 10.1109/ACCESS.2021.3070037. [43] E. Tolin, O. Litschke, S. Bruni, and F. Vipiana, “Compact Extended Scan Range Antenna Array Based on Rotman Lens,” IEEE Trans. Antennas Propag., vol. 67, no. 12, pp. 7356–7367, 2019, doi: 10.1109/TAP.2019.2935086. [44] M. Heino, C. Icheln, J. Haarla, and K. Haneda, “PCB-Based Design of a Beamsteerable Array with High-Gain Antennas and a Rotman Lens at 28 GHz,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 10, pp. 1754–1758, Oct. 2020, doi: 10.1109/LAWP.2020.3017129. [45] Y. Yu, H. Luyen, and N. Behdad, “A wideband millimeter-wave rotman lens multibeam array using substrate integrated coaxial line (SICL) technology,” IEEE Trans. Antennas Propag., vol. 69, no. 11, pp. 7532–7542, 2021, doi: 10.1109/TAP.2021.3090518. [46] Y. J. Cheng et al., “Substrate integrated waveguide (SIW) Rotman lens and its Ka-band multibeam array antenna applications,” IEEE Trans. Antennas Propag., vol. 56, no. 8 II, pp. 2504–2513, 2008, doi: 10.1109/TAP.2008.927567. [47] J. W. Lian, Y. L. Ban, H. Zhu, and Y. J. Guo, “Reduced-Sidelobe Multibeam Array Antenna Based on SIW Rotman Lens,”IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 1, pp. 188–192, Jan. 2020, doi: 10.1109/LAWP.2019.2957509. [48] K. Tekkouk, M. Ettorre, L. Le Coq, and R. Sauleau, “Multibeam SIW Slotted Waveguide Antenna System Fed by a Compact Dual-Layer Rotman Lens,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 504–514, Feb. 2016, doi: 10.1109/TAP.2015.2499752. [49] Y. Liu, H. Yang, Z. Jin, F. Zhao, and J. Zhu, “A Multibeam Cylindrically Conformal Slot Array Antenna Based on a Modified Rotman Lens,” IEEE Trans. Antennas Propag., vol. 66, no. 7, pp. 3441–3452, 2018, doi: 10.1109/TAP.2018.2829816. [50] J. Y. Deng, Y. Bin Liu, Z. Chen, and W. Lin, “Compact Multibeam Antenna Using Miniaturized Slow-Wave Substrate-Integrated Waveguide Rotman Lens for Satellite-Assisted Internet of Vehicles,”IEEE Internet Things J., vol. 11, no. 4, pp. 6848–6856, 2024, doi: 10.1109/JIOT.2023.3313309. [51] Q. Liang, B. Sun, and G. Zhou, “Miniaturization of Rotman Lens Using Array Port Extension,” IEEE Antennas Wirel. Propag. Lett., vol. 22, no. 3, pp. 541–545, 2023, doi: 10.1109/LAWP.2022.3217399. [52] R. K. Luneburg, Mathematical Theory of Optics. RI, USA: Brown University Press, 1944. [53] T. Whittaker, S. Zhang, C. Stevens, A. Powell, J. C. Vardaxolgou, and W. G. Whittow, “3D Printing Materials and Techniques for Antennas and Metamaterials,” IEEE Antennas Propag. Mag., pp. 2–12, 2022, doi: 10.1109/MAP.2022.3229298. [54] B. Zhou, Y. Yang, H. Li, and T. J. Cui, “Beam-steering Vivaldi antenna based on partial Luneburg lens constructed with composite materials,” J. Appl. Phys., vol. 110, no. 8, Oct. 2011, doi: 10.1063/1.3651376. [55] J. Yi, S. N. Burokur, and A. de Lustrac, “Conceptual design of a beam steering lens through transformation electromagnetics,”Opt. Express, vol. 23, no. 10, p. 12942, May 2015, doi: 10.1364/oe.23.012942. [56] N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Electromagnetic design with transformation optics,” Proceedings of the IEEE, vol. 99, no. 10. Institute of Electrical and Electronics Engineers Inc., pp. 1622–1633, 2011. doi: 10.1109/JPROC.2010.2089664. [57] A. Bansal, H. Nagi, P. Febvre, and W. Whittow, “Bespoke Luneburg Lens for Two-Dimensional Beam-Steering Antennas for SatComms on the Move,” IEEE Int. Symp. Antennas Propag. Usn. Radio Sci. Meet., pp. 733–734, 2023, doi: 10.1109/USNC-URSI52151.2023.10238014. [58] A. Bansal, E. Mellios, H. Nagi, P. Febvre, and W. G. Whittow, “Two-Dimensional Beam-Steering Lens Antenna with Fast Inter-Beam Handover for PNT and Data Services for Satellite Communications on the Move,” TechRxiv Prepr., 2023, doi: https://doi.org/10.36227/techrxiv.24157410.v1. [59] J. G. Marin and J. Hesselbarth, “Lens Antenna with Planar Focal Surface for Wide-Angle Beam-Steering Application,” IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2757–2762, 2019. [60] N. Nikolic and A. Hellicar, “Fractional Luneburg lens antenna,” IEEE Antennas Propag. Mag., vol. 56, no. 5, pp. 116–130, Oct. 2014, doi: 10.1109/MAP.2014.6971923. [61] O. Zetterstrom, N. J. G. Fonseca, and O. Quevedo-Teruel, “Compact Half-Luneburg Lens Antenna Based on a Glide-Symmetric Dielectric Structure,” IEEE Antennas Wirel. Propag. Lett., vol. 1, pp. 1–5, 2022, doi: 10.1109/LAWP.2022.3179639. [62] H. Giddens, A. S. Andy, and Y. Hao, “Multimaterial 3-D Printed Compressed Luneburg Lens for mm-Wave Beam Steering,” IEEE Antennas Wirel. Propag. Lett., vol. 20, no. 11, pp. 2166–2170, 2021, doi: 10.1109/LAWP.2021.3109591. [63] S. Zhang, R. K. Arya, S. Pandey, Y. Vardaxoglou, W. Whittow, and R. Mittra, “3D-printed planar graded index lenses,” IET Microwaves, Antennas Propag., vol. 10, no. 13, pp. 1411–1419, Oct. 2016, doi: 10.1049/iet-map.2016.0013. [64] S. Zhang, R. K. Arya, W. G. Whittow, D. Cadman, R. Mittra, and J. C. Vardaxoglou, “Ultra-Wideband Flat Metamaterial GRIN Lenses Assisted with Additive Manufacturing Technique,” IEEE Trans. Antennas Propag., vol. 69, no. 7, pp. 3788–3799, Jul. 2021, doi: 10.1109/TAP.2020.3044586. [65] W. Shao and Q. Chen, “2-D Beam-Steerable Generalized Mikaelian Lens with Unique Flat-Shape Characteristic,” IEEE Antennas Wirel. Propag. Lett., vol. 20, no. 10, pp. 2033–2037, 2021, doi: 10.1109/LAWP.2021.3102316. [66] S. Jain, M. Abdel-Mageed, and R. Mittra, “Flat-lens design using field transformation and its comparison with those based on transformation optics and ray optics,” IEEE Antennas Wirel. Propag. Lett., vol. 12, pp. 777–780, 2013, doi: 10.1109/LAWP.2013.2270946. [67] L. Z. Song, M. Ansari, P. Y. Qin, S. Maci, J. Du, and Y. J. Guo, “Two-Dimensional Wide-Angle Multibeam Flat GRIN Lens with a High Aperture Efficiency,” IEEE Trans. Antennas Propag., vol. 71, no. 10, pp. 8018–8029, 2023, doi: 10.1109/TAP.2023.3298143. [68] A. Bansal, C. J. Panagamuwa, and W. Whittow, “Novel Design Methodology for 3D-Printed Lenses for Travelling Wave Antennas,”IEEE Open J. Antennas Propag., vol. 4, no. January, pp. 196–206, 2023, doi: 10.1109/OJAP.2023.3243408. [69] Y. Luo and Z. N. Chen, “A Scanning Angle Range Enhanced Phased Array Antenna Using Concave-Convex Lens,” Proc. 2018 IEEE Int. Conf. Serv. Oper. Logist. Informatics, SOLI 2018, pp. 17–20, 2018, doi: 10.1109/SOLI.2018.8476789. [70] A. O. Diallo, R. Czarny, B. Loiseaux, and S. Hole, “Comparison between a Thin Lens Antenna Made of Structured Dielectric Material and Conventional Lens Antennas, in Q-Band in a Compact Volume,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 2, pp. 307–310, Feb. 2018, doi: 10.1109/LAWP.2017.2787789. [71] M. R. D. Kodnoeih, Y. Letestu, R. Sauleau, E. M. Cruz, and A. Doll, “Compact folded fresnel zone plate lens antenna for mm-wave communications,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 5, pp. 873–876, May 2018, doi: 10.1109/LAWP.2018.2820420. [72] J. M. Monkevich and G. P. Le Sage, “Design and Fabrication of a Custom-Dielectric Fresnel Multi-Zone Plate Lens Antenna Using Additive Manufacturing Techniques,” IEEE Access, vol. 7, pp. 61452–61460, 2019, doi: 10.1109/ACCESS.2019.2916077. [73] G. B. Wu, Y. S. Zeng, K. F. Chan, S. W. Qu, and C. H. Chan, “3-D Printed Circularly Polarized Modified Fresnel Lens Operating at Terahertz Frequencies,” IEEE Trans. Antennas Propag., vol. 67, no. 7, pp. 4429–4437, Jul. 2019, doi: 10.1109/TAP.2019.2908110. [74] Q. Liao, N. J. G. Fonseca, M. Camacho, A. Palomares-Caballero, F. Mesa, and O. Quevedo-Teruel, “Ray-Tracing Model for Generalized Geodesic-Lens Multiple-Beam Antennas,” IEEE Trans. Antennas Propag., vol. 71, no. 3, pp. 2640–2651, 2023, doi: 10.1109/TAP.2022.3233643. [75] O. Quevedo-Teruel et al., “Geodesic Lens Antennas for 5G and beyond,” IEEE Commun. Mag., vol. 60, no. 1, pp. 40–45, 2022, doi: 10.1109/MCOM.001.2100545. [76] I. Munina, I. Grigoriev, G. O’Donnell, and D. Trimble, “A Review of 3D Printed Gradient Refractive Index Lens Antennas,”IEEE Access, vol. 11, no. December 2022, pp. 8790–8809, 2023, doi: 10.1109/ACCESS.2023.3239782. [77] A. Bansal, C. J. Panagamuwa, and W. G. Whittow, “Simplified Design Methodology for RF Dielectric Homogeneous and Graded Index Lenses,” in IEEE Microwave, Antennas and Propagation Conference (MAPCON), Ahmedabad, India, 2023. [78] Y. J. Guo, M. Ansari, R. W. Ziolkowski, and N. J. G. Fonseca, “Quasi-Optical Multi-Beam Antenna Technologies for B5G and 6G mmWave and THz Networks: A Review,” IEEE Open J. Antennas Propag., vol. 2, no. May, pp. 807–830, 2021, doi: 10.1109/OJAP.2021.3093622. [79] S. Huang, K. Y. Chan, and R. Ramer, “All 3-D Printed Antennas Based on Phase Velocity Control for Beam Steering and Size Reduction with Low Cost,” IEEE Trans. Antennas Propag., vol. 70, no. 3, pp. 1776–1786, 2022, doi: 10.1109/TAP.2021.3118777. [80] M. U. Afzal, K. P. Esselle, and M. N. Y. Koli, “A Beam-Steering Solution with Highly Transmitting Hybrid Metasurfaces and Circularly Polarized High-Gain Radial-Line Slot Array Antennas,”IEEE Trans. Antennas Propag., vol. 70, no. 1, pp. 365–377, 2022, doi: 10.1109/TAP.2021.3111522. [81] H. Lei et al., “A Low-Profile Risley-Prism-Based 2-D Beam-Scanning Circularly Polarized Folded Transmitarray Antenna at Ku-Band,” IEEE Trans. Antennas Propag., vol. 71, no. 7, pp. 6173–6178, 2023, doi: 10.1109/TAP.2023.3269102. [82] M. U. Afzal, L. Matekovits, K. P. Esselle, and A. Lalbakhsh, “Beam-scanning antenna based on near-electric field phase transformation and refraction of electromagnetic wave through dielectric structures,” IEEE Access, vol. 8, pp. 199242–199253, 2020, doi: 10.1109/ACCESS.2020.3033284. [83] M. Ettorre, F. F. Manzillo, M. Casaletti, R. Sauleau, L. Le Coq, and N. Capet, “Continuous Transverse Stub Array for Ka-Band Applications,” IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 4792–4800, 2015, doi: 10.1109/TAP.2015.2479243. [84] M. Ettorre, R. Sauleau, and L. Le Coq, “Multi-beam multi-layer leaky-wave SIW pillbox antenna for millimeter-wave applications,”IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1093–1100, Apr. 2011, doi: 10.1109/TAP.2011.2109695. [85] T. Potelon, M. Ettorre, L. Le Coq, T. Bateman, J. Francey, and R. Sauleau, “Reconfigurable CTS Antenna Fully Integrated in PCB Technology for 5G Backhaul Applications,” IEEE Trans. Antennas Propag., vol. 67, no. 6, pp. 3609–3618, 2019, doi: 10.1109/TAP.2019.2902644. [86] J. L. Volakis, Antenna Engineering Handbook. McGraw-Hill, 2007. [Online]. Available: www.digitalengineeringlibrary.com [87] D. R. Jackson, C. Caloz, and T. Itoh, “Leaky-Wave Antennas,”Proc. IEEE, vol. 100, no. 7, pp. 2194–2206, 2012. [88] F. Monticone and A. Alù, “Leaky-wave theory, techniques, and applications: From microwaves to visible frequencies,” Proc. IEEE, vol. 103, no. 5, pp. 793–821, May 2015, doi: 10.1109/JPROC.2015.2399419. [89] G. Venanzoni, D. Mencarelli, A. Morini, M. Farina, and F. Prudenzano, “Review of substrate integratedwaveguide circuits for beam-forming networks working in x-band,” Applied Sciences (Switzerland), vol. 9, no. 5. MDPI AG, pp. 1–19, 2019. doi: 10.3390/app9051003. [90] K. Wu, M. Bozzi, and N. J. G. Fonseca, “Substrate Integrated Transmission Lines: Review and Applications,” IEEE J. Microwaves, vol. 1, no. 1, pp. 345–363, Jan. 2021, doi: 10.1109/jmw.2020.3034379. [91] M. Bozzi, A. Georgiadis, and K. Wu, “Review of substrate-integrated waveguide circuits and antennas,” IET Microwaves, Antennas Propag., vol. 5, no. 8, pp. 909–920, Jun. 2011, doi: 10.1049/iet-map.2010.0463. [92] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd Editio. New York, NY, USA: Wiley, 2005. [93] D. K. Karmokar, S. L. Chen, D. Thalakotuna, P. Y. Qin, T. S. Bird, and Y. J. Guo, “Continuous Backward-to-Forward Scanning 1-D Slot-Array Leaky-Wave Antenna with Improved Gain,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 1, pp. 89–93, Jan. 2020, doi: 10.1109/LAWP.2019.2953927. [94] S. Sengupta, D. R. Jackson, A. T. Almutawa, H. Kazemi, F. Capolino, and S. A. Long, “A Cross-Shaped 2-D Periodic Leaky-Wave Antenna,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 1289–1301, Mar. 2020, doi: 10.1109/TAP.2019.2948524. [95] Y. Geng, J. Wang, Z. Li, Y. Li, M. Chen, and Z. Zhang, “Dual-Beam and Tri-Band SIW Leaky-Wave Antenna with Wide Beam Scanning Range including Broadside Direction,” IEEE Access, vol. 7, pp. 176361–176368, 2019, doi: 10.1109/ACCESS.2019.2957763. [96] Z. Ahmed, M. H. Hoang, P. McEvoy, and M. J. Ammann, “Millimetre-wave planar bruce array antenna,” in 2020 International Workshop on Antenna Technology, iWAT 2020, Institute of Electrical and Electronics Engineers Inc., Feb. 2020. doi: 10.1109/iWAT48004.2020.1570608201. [97] G. Bogdan, K. Godziszewski, Y. Yashchyshyn, C. H. Kim, and S. B. Hyun, “Time-Modulated Antenna Array for Real-Time Adaptation in Wideband Wireless Systems-Part I: Design and Characterization,”IEEE Trans. Antennas Propag., vol. 68, no. 10, pp. 6964–6972, Oct. 2020, doi: 10.1109/TAP.2019.2902755. [98] M. Wang, H. F. Ma, H. C. Zhang, W. X. Tang, X. R. Zhang, and T. J. Cui, “Frequency-Fixed Beam-Scanning Leaky-Wave Antenna Using Electronically Controllable Corrugated Microstrip Line,” IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4449–4457, Sep. 2018, doi: 10.1109/TAP.2018.2845452. [99] A. Bansal, C. J. Panagamuwa, and W. G. Whittow, “Full 360 ° beam steering millimetre-wave leaky-wave antennas coupled with bespoke 3D-printed dielectric lenses for 5G base stations,” Electron. Lett., vol. 59, no. 8, pp. 5–7, 2023. [100] A. Bansal, C. Panagamuwa, and W. Whittow, “Millimeter-Wave Beam Steerable Slot Array Antenna Using an Inter-Digitated Capacitor Based Corrugated SIW,” IEEE Trans. Antennas Propag., vol. 70, no. 12, pp. 11761–11770, 2022, doi: 10.1109/TAP.2022.3211013. [101] L. Y. Ma, N. Soin, M. H. M. Daut, and S. F. W. M. Hatta, “Comprehensive Study on RF-MEMS Switches Used for 5G Scenario,”IEEE Access, vol. 7, pp. 107506–107522, 2019, doi: 10.1109/ACCESS.2019.2932800. [102] T. Lou, X. X. Yang, H. Qiu, Q. Luo, and S. Gao, “Low-Cost Electrical Beam-Scanning Leaky-Wave Antenna Based on Bent Corrugated Substrate Integrated Waveguide,” IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 2, pp. 353–357, Feb. 2019, doi: 10.1109/LAWP.2019.2890995. [103] I. Serhsouh, M. Himdi, H. Lebbar, and H. Vettikalladi, “Reconfigurable SIW Antenna for Fixed Frequency Beam Scanning and 5G Applications,” IEEE Access, vol. 8, pp. 60084–60089, 2020, doi: 10.1109/ACCESS.2020.2983001. [104] D. K. Karmokar, K. P. Esselle, and S. G. Hay, “Fixed-Frequency Beam Steering of Microstrip Leaky-Wave Antennas Using Binary Switches,” IEEE Trans. Antennas Propag., vol. 64, no. 6, pp. 2146–2154, Jun. 2016, doi: 10.1109/TAP.2016.2546949. [105] A. Bansal, C. J. Panagamuwa, and W. G. Whittow, “Fixed frequency beam‐steering using bow‐tie slot based dielectric filled waveguide antenna array,” Electron. Lett., vol. 59, no. 13, pp. 1–3, 2023, doi: 10.1049/ell2.12864. [106] J. L. Gómez-Tornero, R. Guzmán-Quirós, G. Goussetis, and S. K. Podilchak, “Electronically-reconfigurable parallel-plate wave launchers based on corrugated substrate integrated leaky waveguides with tunable components,” in 46th European Microwave Conference, Institute of Electrical and Electronics Engineers Inc., 2016, pp. 795–798. doi: 10.1109/EuMC.2016.7824463. [107] D. Jiang et al., “Liquid crystal-based wideband reconfigurable leaky wave X-band antenna,” IEEE Access, vol. 7, pp. 127320–127326, 2019, doi: 10.1109/ACCESS.2019.2939097. [108] Y. Yashchyshyn et al., “28 GHz Switched-Beam Antenna Based on S-PIN Diodes for 5G Mobile Communications,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 2, pp. 225–228, Feb. 2018, doi: 10.1109/LAWP.2017.2781262. [109] N. Javanbakht, B. Syrett, R. E. Amaya, and J. Shaker, “A Review of Reconfigurable Leaky-Wave Antennas,” IEEE Access, vol. 9. Institute of Electrical and Electronics Engineers Inc., pp. 94224–94238, 2021. doi: 10.1109/ACCESS.2021.3093775. [110] D. G. Chen and K. W. Eccleston, “Substrate integrated waveguide with corrugated wall,” in Proceedings of 2008 Asia Pacific Microwave Conference, APMC 2008, 2008. doi: 10.1109/APMC.2008.4958218. [111] K. W. Eccleston, “Mode analysis of the corrugated substrate integrated waveguide,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3004–3012, 2012, doi: 10.1109/TMTT.2012.2209453. [112] A. Bansal, C. J. Panagamuwa, and W. G. Whittow, “Conformal Millimeter-Wave Corrugated Substrate Integrated Waveguide Slot Array Antenna,” 2023 8th Int. Conf. Smart Sustain. Technol., pp. 1–4, Jun. 2023, doi: 10.23919/SPLITECH58164.2023.10193713. [113] Y. Lin, Y. Zhang, H. Liu, Y. Zhang, E. Forsberg, and S. He, “A Simple High-Gain Millimeter-Wave Leaky-Wave Slot Antenna Based on a Bent Corrugated SIW,” IEEE Access, vol. 8, pp. 91999–92006, 2020, doi: 10.1109/ACCESS.2020.2993999. [114] D. Cho and H. Y. Lee, “Folded corrugated SIW (FCSIW) slot antenna for backlobe suppression,” IEEE Antennas Wirel. Propag. Lett., vol. 12, pp. 1276–1279, 2013, doi: 10.1109/LAWP.2013.2283535. [115] K. W. Eccleston, “Half-mode corrugated substrate integrated waveguide mode behavior,” in 2013 IEEE International Wireless Symposium, IWS 2013, 2013. doi: 10.1109/IEEE-IWS.2013.6616708. [116] U. Pandey, P. Singh, N. P. Gupta, R. Singh, and A. Bansal, “Wideband leaky-wave antenna with dumbbell-shaped slots on substrate integrated waveguides with twisted corrugations,” Electron. Lett., vol. 59, no. 20, pp. 3–5, 2023, doi: 10.1049/ell2.12991. [117] A. Bansal and W. G. Whittow, “Leaky Wave Antenna on a Half-Mode Integrated Digitated Capacitor-based Corrugated Substrate Integrated Waveguide with Tilted Vertical Slots,” in 2023 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), IEEE, 2023, pp. 1–4. doi: 10.1109/MAPCON58678.2023.10464096. [118] A. Lai, T. Itoh, and C. Caloz, “Composite Right/Left-Handed Transmission Line Metamaterials,” IEEE Microwave Magazine, pp. 34–50, 2004. [119] A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental Observations of a Left-Handed Material That Obeys Snell’s Law,”Phys. Rev. Lett., vol. 90, no. 13, p. 4, 2003, doi: 10.1103/PhysRevLett.90.137401. [120] A. Dadgarpour, B. Zarghooni, B. S. Virdee, and T. A. Denidni, “Beam tilting antenna using integrated metamaterial loading,”IEEE Trans. Antennas Propag., vol. 62, no. 5, pp. 2874–2879, 2014, doi: 10.1109/TAP.2014.2308516. [121] A. Dadgarpour, B. Zarghooni, B. S. Virdee, and T. A. Denidni, “One- and Two-Dimensional Beam-Switching Antenna for Millimeter-Wave MIMO Applications,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 564–573, Feb. 2016, doi: 10.1109/TAP.2015.2508478. [122] S. S. Bukhari, J. Vardaxoglou, and W. Whittow, “A metasurfaces review: Definitions and applications,” Appl. Sci., vol. 9, no. 13, 2019, doi: 10.3390/app9132727. [123] L. Boccia, I. Russo, G. Amendola, and G. Di Massa, “Tunable frequency-selective surfaces for beam-steering applications,”Electron. Lett., vol. 45, no. 24, pp. 1213–1215, 2009, doi: 10.1049/el.2009.2577. [124] S. Narayan and R. M. Jha, “Electromagnetic Techniques and Design Strategies for FSS Structure Applications [Antenna Applications Corner],” IEEE Antennas Propag. Mag., vol. 57, no. 5, pp. 135–158, Oct. 2015, doi: 10.1109/MAP.2015.2474867. [125] A. Kesavan, M. Mantash, and T. A. Denidni, “Beam-switching millimetre-wave antenna using cantilever-based FSSs,” IET Microwaves, Antennas Propag., vol. 12, no. 13, pp. 2019–2024, Oct. 2018, doi: 10.1049/iet-map.2018.5017. [126] A. Kesavan, M. Mantash, J. Zaid, and T. A. Denidni, “A dual-plane beam-sweeping millimeter-wave antenna using reconfigurable frequency selective surfaces,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 10, pp. 1832–1836, Oct. 2018, doi: 10.1109/LAWP.2018.2867331. [127] L. Y. Ji, Z. Y. Zhang, and N. W. Liu, “A Two-Dimensional Beam-Steering Partially Reflective Surface (PRS) Antenna Using a Reconfigurable FSS Structure,” IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 6, pp. 1076–1080, Jun. 2019, doi: 10.1109/LAWP.2019.2907641. [128] W. Pan, C. Huang, P. Chen, M. Pu, X. Ma, and X. Luo, “A beam steering horn antenna using active frequency selective surface,”IEEE Trans. Antennas Propag., vol. 61, no. 12, pp. 6218–6223, 2013, doi: 10.1109/TAP.2013.2280592. [129] J. R. Reis et al., “FSS-Inspired Transmitarray for Two-Dimensional Antenna Beamsteering,” IEEE Trans. Antennas Propag., vol. 64, no. 6, pp. 2197–2206, 2016, doi: 10.1109/TAP.2016.2543802. [130] G. H. Elzwawi, H. H. Elzwawi, M. M. Tahseen, and T. A. Denidni, “Frequency selective surface-based switched-beamforming antenna,” IEEE Access, vol. 6, pp. 48042–48050, Jul. 2018, doi: 10.1109/ACCESS.2018.2850808. [131] C. Gu et al., “Dual-band electronically beam-switched antenna using slot active frequency selective surface,” IEEE Trans. Antennas Propag., vol. 65, no. 3, pp. 1393–1398, Mar. 2017, doi: 10.1109/TAP.2016.2647578. [132] A. Goudarzi, M. M. Honari, and R. Mirzavand, “A Millimeter-Wave Fabry-Perot Cavity Antenna with Unidirectional Beam Scanning Capability for 5G Applications,” IEEE Trans. Antennas Propag., vol. 70, no. 3, pp. 1787–1796, 2022, doi: 10.1109/TAP.2021.3118796. [133] A. Goudarzi, M. M. Honari, and R. Mirzavand, “A High-Gain Leaky-Wave Antenna Using Resonant Cavity Structure with Unidirectional Frequency Scanning Capability for 5G Applications,” IEEE Access, vol. 9, pp. 138858–138865, 2021, doi: 10.1109/ACCESS.2021.3118286. [134] S. Zahra et al., “Electromagnetic Metasurfaces and Reconfigurable Metasurfaces: A Review,” Front. Phys., vol. 8, pp. 1–16, Jan. 2021, doi: 10.3389/fphy.2020.593411. [135] T. Li and Z. N. Chen, “Control of Beam Direction for Substrate-Integrated Waveguide Slot Array Antenna Using Metasurface,”IEEE Trans. Antennas Propag., vol. 66, no. 6, pp. 2862–2869, Jun. 2018, doi: 10.1109/TAP.2018.2823755. [136] Y. Yin et al., “Design of a 2-bit Dual-Polarized Reconfigurable Reflectarray With High Aperture Efficiency,” IEEE Trans. Antennas Propag., vol. 72, no. 1, pp. 542–552, Jan. 2024, doi: 10.1109/TAP.2023.3326951. [137] M. Bodehou, E. Martini, S. Maci, I. Huynen, and C. Craeye, “Multibeam and Beam Scanning with Modulated Metasurfaces,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 1273–1281, 2020, doi: 10.1109/TAP.2019.2944554. [138] J. B. Gros, V. Popov, M. A. Odit, V. Lenets, and G. Lerosey, “A Reconfigurable Intelligent Surface at mmWave Based on a Binary Phase Tunable Metasurface,” IEEE Open J. Commun. Soc., vol. 2, no. April, pp. 1055–1064, 2021, doi: 10.1109/OJCOMS.2021.3076271. [139] Y. Zhang, Z. Han, S. Tang, S. Shen, C.-Y. Chiu, and R. Murch, “A Highly Pattern-Reconfigurable Planar Antenna With 360° Single- and Multi-Beam Steering,” IEEE Trans. Antennas Propag., vol. 70, no. 8, pp. 6490–6504, 2022. [140] X. Wan et al., “Reconfigurable Sum and Difference Beams Based on a Binary Programmable Metasurface,” IEEE Antennas Wirel. Propag. Lett., vol. 20, no. 3, pp. 381–385, 2021, doi: 10.1109/LAWP.2021.3050808. [141] A. Araghi et al., “Reconfigurable Intelligent Surface (RIS) in the Sub-6 GHz Band: Design, Implementation, and Real-World Demonstration,” IEEE Access, vol. 10, pp. 2646–2655, 2022, doi: 10.1109/ACCESS.2022.3140278. [142] B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag., vol. 58, no. 10, pp. 3212–3221, 2010, doi: 10.1109/TAP.2010.2055812. [143] B. Rana, S. S. Cho, and I. P. Hong, “Review Paper on Hardware of Reconfigurable Intelligent Surfaces,” IEEE Access, vol. 11, no. February, pp. 29614–29634, 2023, doi: 10.1109/ACCESS.2023.3261547. [144] J. Rains et al., “High-Resolution Programmable Scattering for Wireless Coverage Enhancement: An Indoor Field Trial Campaign,” IEEE Trans. Antennas Propag., vol. 71, no. 1, pp. 518–530, 2023, doi: 10.1109/TAP.2022.3216555. [145] A. Araghi, M. Khalily, P. Xiao, F. Wang, and R. Tafazolli, “Systematic Design of a Holographic-Based Metasurface Reflector in the Sub-6 GHz Band,” IEEE Antennas Wirel. Propag. Lett., vol. 21, no. 10, pp. 1960–1964, 2022, doi: 10.1109/LAWP.2022.3186922. [146] A. Bansal and W. Whittow, “Figuring out Impaired Reconfigurable Intelligent Surfaces,” TechRxiv Prepr., 2024, doi: 10.36227/techrxiv.171051649.95959056/v1. [147] A. Araghi, M. Khalily, P. Xiao, and R. Tafazolli, “Holographic-Based Leaky-Wave Structures: Transformation of Guided Waves to Leaky Waves,” IEEE Microw. Mag., vol. 22, no. 6, pp. 49–63, 2021, doi: 10.1109/MMM.2021.3064118. [148] Y. Wang, Q. Feng, X. Kong, H. Liu, J. Han, and L. Li, “Multi-Feed Beam-Switchable Cylindrical Conformal Holographic Metasurface Antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 23, no. 3, pp. 970–974, 2023, doi: 10.1109/LAWP.2023.3340682. [149] D. Kampouridou and A. Feresidis, “Tunable Multibeam Holographic Metasurface Antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 21, no. 11, pp. 2264–2267, 2022, doi: 10.1109/LAWP.2022.3192977.