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Abstract—Methodologies inspired by physics-informed neural4
networks (PINNs) were used to forecast observations recorded by5
stationary ocean buoys. We combined buoy observations with nu-6
merical models to train surrogate deep learning networks that per-7
formed better than with either data alone. Numerical model outputs8
were collected from two sources for training and regularization: the9
hybrid circulation ocean model and the fifth ECMWF reanalysis10
experiment. A hyperparameter determines the ratio of observa-11
tional and modeled data to be used in the training procedure, so we12
conducted a grid search to find the most performant ratio. Overall,13
the technique improved the general forecast performance com-14
pared with nonregularized models. Under specific circumstances,15
the regularization mechanism enabled the PINN models to be more16
accurate than the numerical models. This demonstrates the utility17
of combining various climate models and sensor observations to18
improve surrogate modeling.19

Index Terms—Deep learning, ECMWF re-analysis v5 (ERA5),20
hybrid circulation ocean model (HYCOM), physics-informed21
neural network (PINN), recurrent model, surrogate model.22

I. INTRODUCTION23

OCEAN parameter forecasting is studied for various appli-24

cations, such as climate modeling, marine life population25

surveying, and water quality monitoring. There is a clear need26

across industries to have fast and far-reaching forecasts. As27

such, research and improvements in ocean and climate mod-28

eling tools have continued to be interesting and necessary in29

literature. Well-studied numerical solutions for this task include30

Navier–Stokes and advection–diffusion, which are formulated31

as sets of partial differential equations (PDEs) for modeling32

flow systems. Building primitive equations into a more complex33

model yields global ocean and climate models for accurate,34

full-coverage simulations [1], [2], [3]. The initial values and35

boundary conditions of the modeled system are important for36

accurately modeling physical behaviors in this way [4]. Initial37
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values are recorded as sparse observations across the world’s 38

oceans using different methods. These methods include free- 39

floating buoys that record data by following ocean currents, 40

stationary buoys for monitoring fixed locations, and satellites 41

for collecting global imagery [5]. As the viability of the mod- 42

eled forecasts greatly depends on accurate estimations of the 43

initial values, data assimilative systems have been a point of 44

research, and assimilating observations with numerical models 45

has shown improved results [6]. In the case of the United 46

States Navy, researchers have developed the global coupled 47

atmosphere–ocean–sea ice forecasting system called the Navy 48

Earth System Prediction Capability where modeled data are 49

assimilated with observations for an improved result [7], [8]. 50

However, observations can be missing such that there is no data 51

availability. In this situation, the data assimilation scheme cannot 52

be taken advantage of. Therefore, there exists some motivation to 53

generate discrete observation forecasts for their integration into 54

an assimilation pipeline. To this end, we investigate a generalized 55

procedure to predict sparse ocean observation values. 56

Surrogate deep learning models are trained using available 57

historical data to model a system given prior input values. 58

The main benefit of this technique is that forecasts are gen- 59

erated more quickly than when evolving a numerical model. 60

Recurrent neural network (RNN) architectures, such as long 61

short-term memory (LSTM) networks and Transformers, are 62

used to propagate information forward when making long-term 63

predictions, making them popular choices for modeling ocean 64

parameters as surrogate models [5]. When surrogate modeling 65

ocean parameters, data are required from recorded observations, 66

numerical model outputs, or both. In this work, we take partic- 67

ular interest in two data assimilated numerical models, which 68

provide training and regularization data. The hybrid circulation 69

ocean model (HYCOM) is a hybrid isopycnic model, which 70

sees improvement over its predecessor in shallow water and 71

unstratified ocean regions [1]. ECMWF re-analysis v5 (ERA5) 72

is the fifth reanalysis experiment of the European Centre for 73

Medium-Range Weather Forecasts (ECMWF) model for global 74

climate and weather features [2]. 75

By combining the numerical models with buoy-collected ob- 76

servation data, we show how a physics-regularized approach can 77

be used to improve observation forecasting. Thus, we consider 78

physics-informed neural networks (PINNs) for approximating 79

numerical models to accurately forecast a single discrete point 80

(i.e., an observation). A PINN is a neural network, which is 81

regularized at training time by applying penalties in the loss 82

function. The penalties are scored by comparing adherence 83
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to a PDE-based numerical model [4]. We investigate if the84

forecasting result of real-world sensor data collected by sta-85

tionary ocean buoys can be more accurately forecasted when86

regularized by the prior mentioned numerical models. Since87

reanalysis data exists for many ocean and climate features, we88

use the high-quality numerical model outputs to regularize our89

PINN model.90

As far as we know, we are the first to integrate HYCOM91

and ERA5 data as a regularizing source in a PINN-inspired92

network. We show that the physical models may be used with93

recorded buoy data to provide more stable long-term predictions94

due to the regularization support. Our methodology differs from95

other PINN research by modeling only observations and, more96

importantly, by the way in which we implement the loss function.97

These differences will be discussed further in the upcoming98

related works section. To assess our models, sea surface tempera-99

ture (SST), gust strength, and air pressure are sparsely forecasted100

using our technique. The main contributions of this article are as101

follows. We train deep learning models to recursively forecast102

physical parameters as recorded by free-floating ocean buoys.103

We define a custom loss function to use numerically modeled104

data and observation data as sources for training physics regular-105

ized models. The methodology is capable of handling situations106

where a physical parameter is available from both sources or107

a single source. When both sources of data are available for a108

feature, we show how the surrogate may be trained using a ratio109

of the training errors from each source. The most performant110

surrogate for the test data are found through a grid search of the111

static regularization term, λ, which controls the ratio of errors.112

We demonstrate the flexibility of PINNs to combine different113

numerical models using a surrogate deep learning model, which114

outperforms the nonregularized deep learning models. We dis-115

cuss the numerical models and their effect on the rolling forecast116

ability of our surrogate model for up to 24 h.117

The rest of this article is organized as follows. Section II118

presents the related works. Section III presents the methods used119

in this article. Section IV presents the results. Finally, Section120

V concludes this article.121

II. RELATED WORKS122

Ocean surrogate models have been advancing with the123

advent of deep learning, and more refined machine learning124

approaches [5]. Research into deep learning surrogate modeling125

of SST shows promising results as SST can be forecasted as126

discrete points [9], as a field [10], or as a super-resolution127

field [11]. Instead of directly solving intractable formulations,128

such as Naiver–Stokes or other prognostic equations, for ocean129

modeling, a data-driven surrogate model is trained using the130

substantial amounts of historical training data available via131

numerical models or raw observations [12]. The use of ob-132

servation assimilated models to train deep learning surrogates133

has been seen multiple times using both HYCOM [13], [14]134

and ERA5 [15], [16], [17] models. Through back propagation a135

deep learning model learns a parameterized representation of the136

underlying physical phenomenon, which are otherwise modeled137

numerically. Surrogate models may be preferred over traditional138

models due to faster outputs once the model has been trained [8]. 139

For example, in [18], approaching hurricane parameters are 140

forecasted in seconds. Machine learning surrogate models will 141

generally have more numerical instability when compared with 142

numerical models in forecasting experiments. This speed and ac- 143

curacy tradeoff is seen in the conclusions of surrogate modeling 144

studies for data assimilation in dynamic subsurface flow [12] and 145

regional wind/wave forecasting [19]. In both papers, the forecast 146

accuracy was similar or lower than numerical models, but the 147

computational speed was greatly improved. One keynote on 148

numerical stability and model accuracy is that the generalization 149

of machine learning surrogate modeling is not assured for all 150

cases. Authors observe the stability difference in operational 151

planning with dynamic constraints where the forecasting stabil- 152

ity is very good for some deep learning surrogate models but 153

unstable when using other machine learning techniques [20]. 154

This forecasting stability problem is also considered in [21], 155

where outputs of physics-based numerical models are combined 156

and used as supervised learning training sets to promote more 157

accurate forecasts than when used independently. Furthermore, 158

the surrogate modeling task can be used with data assimilation 159

to correct numerical model error in an online fashion [22]. As 160

such, surrogate models have a place among the more carefully 161

calculated simulation-based numerical models, such as HY- 162

COM and ERA5. This is especially true in applications where 163

numerical solutions are too complex or computationally inten- 164

sive for real time analysis and the acceptable error threshold is 165

high. 166

PINNs are referred to as such because they leverage physical 167

constraints within the model’s loss function during training 168

to enforce convergence to governing physical laws. This type 169

of network was popularized in the deep learning community 170

by Raissi et al. [23] in 2017 and 2019. The introduction of 171

differential equations that define physical phenomenon to the 172

training procedure is found to improve the model’s resilience 173

to noise [24]. PINNs are regularized in training by comparing 174

model performance to the adherence of the introduced PDEs 175

while also fitting data points to unique solutions [25]. The result 176

of these forecasting models is that we can incorporate noisy 177

data into existing algorithms, ignore complex mesh generation, 178

and tackle high-dimensional problems governed by parame- 179

terized PDEs. Originally, research has focused on surrogate 180

modeling with PINNs for solving systems governed by the 181

Burgers’ and Navier–Stokes equations [26]. PINNs have re- 182

cently been investigated in industry informatics settings, such 183

as modeling flow equations for ocean models [24], modeling 184

crack propagation [27], [28], modeling leakage [29], model- 185

ing faults [30], and modeling electric loads [31]. Forecasting 186

SST is commonly found as a full-coverage modeling problem 187

combining either generative models [32], [33] or convolutional 188

neural networks [34] with various PDEs. Continual discussion 189

on PINNs and the types of equations usually solved can be 190

reviewed in [4] and [35]. 191

We have not seen any other works that use a ratio of nu- 192

merical model data and observations to train and regularize 193

a deep neural network for surrogate modeling. Our methods 194

share similarities with [21], who utilizes numerical models as 195
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training data for surrogate models. However, we employ our196

PINN-inspired approach to regularize models by combining197

both observations and numerical outputs. Furthermore, our work198

differs methodologically from the prior mentioned PINN re-199

search in two significant ways. First, there is no differentiation200

or simulation step to solve selected PDEs within the surrogate201

training procedure. This is the case because the numerical model202

pipeline is too computationally intensive for this to be feasi-203

ble. Instead, the selected climate and oceanography models,204

HYCOM and ERA5, have already undergone comprehensive205

modeling and data assimilation processes, which provide high206

quality, historical simulation data. Using the precomputed data207

instead of directly solving PDEs means the numerical model can208

be arbitrarily complex and we do not need to implement the for-209

mulation for use in our framework. The second divergence is the210

role of the hyperparameter λ within the PINN loss function. The211

traditional PINN training loss function sums the performance212

of the surrogate model and the divergence when compared with213

the numerical solution of selected PDEs. In that case, λ is used214

as the multiplicative weighting term to determine how much215

of a contribution the divergence from the numerical solution216

has on the final loss output. Instead, we use λ as a mechanism217

to control a weighted ratio of observation versus modeled data218

in training. This ratio of loss from multiple sources improves219

the training process when numerical data, observational data, or220

both are noisy. The proposed buoy forecasting task is inspired by221

Pokhrel et al. [36], but we forecast multiple buoy parameters, test222

additional numerical models (ERA5 and HYCOM), and apply223

our physics-regularized training methodology, as main differ-224

ences. So, we show, in an experimental approach, that we may225

use complex solutions calculated by numerical climatology and226

ocean flow models as a means of regularizing surrogate PINN227

models. We aim to demonstrate that a PINN can internalize228

the simulated outputs of ocean and climate models to be more229

capable of forecasting unseen buoy values.230

III. METHODS231

In this section, we discuss the methodologies utilized in232

investigating our PINN-inspired surrogate models. The models233

are trained to forecast ocean observations at fixed locations234

given prior conditions. The numerical models, HYCOM and235

ERA5, regularize the model at training time and offer additional236

input features. Section III is organized as follows. Section III-A237

defines the numerical models overview; Section III-B presents238

the data and feature processing; Section III-C presents deep239

learning models; and Section III-D presents metrics and testing240

strategy.241

A. Numerical Models Overview242

The HYCOM system is a primitive equation model for gen-243

eral ocean circulation that evolved from the Miami Isopycnic-244

Coordinate Ocean Model (MICOM) system developed by Bleck245

in [1] and Halliwell [3]. HYCOM, such as MICOM, is a246

primitive-equation model containing five prognostic equations.247

Two equations for the horizontal velocity components, a mass248

continuity or layer thickness tendency equation, and two conser- 249

vation equations for a pair of thermodynamic variables, such as 250

salt and temperature or salt and density. The authors also define 251

several diagnostic equations to control the spacing and move- 252

ment of layer interfaces. This includes the hydrostatic equation, 253

which links temperature, salinity, and pressure, alongside an 254

equation prescribing the vertical mass flux through a surface. A 255

hybrid grid-generating technique determines whether isopycnal 256

or inflated nonisopycnal layers are specified [1]. Beyond the 257

general governing equations and gridding algorithm, HYCOM 258

has specialized mixing processes, many of which are shared with 259

the MICOM implementation. Temperature and salinity profiles 260

are assimilated into the ocean flow model to improve initial 261

analysis. The specific HYCOM implementation we use for data 262

is the 41-layer HYCOM + NCODA Global 1/12◦ reanalysis 263

experiment. 264

ERA5 is the fifth ECMWF reanalysis for global climate and 265

weather features. The atmospheric global reanalysis (HRES) 266

includes the period from January 1950 to the present year. 267

ERA5 reanalysis is produced using the 4D-Var data assimi- 268

lation technique and model forecasts with 137 hybrid vertical 269

sigma/pressure levels [2]. The data assimilation of ERA5 also 270

contains an ensemble system (EDA) of ten members for provid- 271

ing background error estimates. The model assimilates as many 272

observations as possible in the upper air and near-surface re- 273

gions. This forecasting system includes over a decade of research 274

and development for all components: atmosphere, land, and 275

ocean waves. The integrated forecast system (IFS) implemented 276

by ECMWF has its equations expertly discussed in the docu- 277

mentation manual [37] and is more generally discussed in [2]. 278

We specifically use the ERA5 hourly data on single levels from 279

1959 to the present [38], which is a data assimilative reanalysis 280

that uses the 2016 version of the ECMWF numerical weather 281

prediction model and data assimilation system (IFS Cy41r2). 282

The ERA5 implementation is modeled at 1/4◦ latitude/longitude 283

increments. Thus, the resolution of ERA5 is lower than that of 284

HYCOM. 285

Given these arbitrarily complex numerical models, which are 286

precomputed, we do not need to implement the PDEs, which 287

govern the models directly. Instead, we will use the outputs from 288

both models as training and regularization data within our deep 289

learning models. To yield discrete value forecasting in a generic 290

manner, we only need the values, which are geographically 291

closest to the latitude and longitude of the buoy observations. 292

Likewise, we collect the discrete time step temporally closest to 293

the observations we are interested in. Therefore, we consider a 294

generic method for retrieving data from full-coverage numerical 295

models in 296

fm(t, x, y) = v. (1)

For a sufficiently complex model fm, we input the desired 297

period t and the closest possible latitude and longitude, x and 298

y. This yields whichever set of scalar features v are desired 299

from the numerical model. These values can then be used as 300

regularization data, training data, or both for a deep learning 301

PINN model. This formulation is useful in our methodology 302

where we want to train a neural network on the observations 303
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themselves while regularizing with numerical model data. This304

differs to similar PINNs that provide full-coverage modeling of305

ocean and climate features, where the training data are limited306

to full-coverage reanalysis and the regularizing PDEs are for-307

mulated from simpler equations as seen in [32], [33], and [34].308

B. Data and Feature Processing309

Both buoy observations and numerical model outputs are pub-310

licly available and have decades worth of data. In this study, we311

select dates from January 1st, 2011 to December 31st, 2011. The312

buoy data, which comprises the observation data for this study,313

comes from 3-m discus Self-Contained Ocean Observations314

Payload sensor package buoys and Waverider buoys. We select315

124 candidate buoys from around the United States East and316

West Coasts, the Caribbean, and the Gulf of Mexico. The buoy317

data are collected from the National Oceanic and Atmospheric318

Administration (NOAA) public data center. NOAA arranges319

individual buoys systematically by assigning each one a distinct320

identification (ID) number. The specific ID corresponding to321

each buoy selected for analysis is found in the Appendix. Water322

temperature, air pressure, and gust strength are extracted from323

the buoy feature set to provide the real-world recorded result.324

Since HYCOM and ERA5 are both gridded datasets, we select325

the data points which match the latitude and longitude as closely326

as possible to each buoy position. HYCOM snapshots are taken327

every 3 h, and most buoys are recorded at the 50th min of each328

hour. Therefore, we forecast buoy features in 3-h increments. To329

facilitate the coupling of the numerical models and buoy data,330

we select buoy features that have matching modeled numerical331

features. Out of the 18 selected features, water temperature, gust332

strength, and air pressure are shared by the numerical models and333

the buoys, so they will be coupled in training time, as described334

by the loss function. We display all features recorded from the335

buoys and numerical models in Table I along with their original336

units.337

It is possible that data are missing from our data sources in338

two separate ways. A value may be missing temporally such339

that no data are recorded at all for a particular time step. This340

is most common in the NOAA buoy data where, for example, a341

buoy faces mechanical failure and cannot record observations for342

days to months at a time. Therefore, our training and testing data343

are limited by the amount of available buoy-recorded data. The344

numerical models do not leave a time step without data except345

in one case, a 24 h gap found within the HYCOM dataset. Since346

this represents only eight data points, we cover the temporal347

gap by replacing the missing time steps with the previous 24 h348

period. Otherwise, for a given time step, features may be missing349

data and are replaced with fill values of 99, 999, 9999, or350

−32 767, depending on the data source and feature. Each of351

our sources of data exhibits at least some fill data, depending352

on the geographical region or time of year. We remove all fill353

values from the data and, in their place, linearly interpolate354

the missing values forward and backward for that individual355

buoy or numerical model. If any numerical model data source356

are composed of more than 20% fill values, we disregard that357

corresponding buoy from the training and testing pipeline. No358

buoys are discarded for having too many fill values for the359

TABLE I
DATA FEATURES AND THEIR SOURCES

purpose of preserving as much data for training and testing as 360

possible. It is important to note that the retention of buoys with 361

interpolated values can have an impact on model accuracy. 362

The processed data are split into three datasets for training, 363

validation, and testing. As each buoy is missing various days, 364

we select the train, test, and validation splits by date. Therefore, 365

all members of the training data are chosen from January 1st 366

to September 13th. The validation data is from September 13th 367

to October 20th. The testing data includes the remainder of the 368

year. Since the buoys are missing data at separate times of the 369

year, a buoy may occasionally contribute to one dataset but not 370

another. We specify the buoy selection in Table VI where we 371

display the number of buoys allowed into each dataset. There 372

are 148 365 training instances, 23 118 validation instances, and 373

48 039 testing instances. Among the original 124 buoys selected 374

for processing, only 86 buoys had training, validation, and 375

testing data available. Each feature is independently normalized 376

between −1 and 1 before training, using the training data min- 377

imum and maximum values. This approach is essential in deep 378

learning to prevent data with varying scales from dominating 379

the network’s performance. As our network is trained on scaled 380

data, we transform the network’s output to its original scale for 381

meaningful result comparison. 382

To understand the impact of first-order differenced data on our 383

regularizing technique, we studied two separate setups. In the 384

first, we train the models using the original values recorded by 385

the data sources. Subsequently, we take the first-order difference 386

to train the model on the differences between time steps. Training 387

with differenced values to make the data stationary is seen for 388
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nonregularized RNNs [39] and physics regularized RNNs [40]389

when forecasting time series. Stationarity means that a time390

series has been stabilized such that it has consistent statistical391

properties, such as mean and variance [41]. Nonstationary data392

contains trends and seasonality that may introduce bias to the393

surrogate models. Taking the first-order difference of our data394

removes trends in the training data and makes the analysis395

problem more forgiving. The result is that modeling using the396

differenced data will result in higher accuracy and a more stable397

forecast. The more consistent statistics also imply more accurate398

scaling when normalizing the test data. Nonstationary data are399

still useful for models with longer context windows or the400

addition of features, which are embedded in time, so testing401

both data representations is worthwhile. In our experiments, we402

will clearly denote the data used when training or evaluating a403

surrogate model as either original data or differenced data. When404

comparing models which forecast the differences in data rather405

than the original data, we need to transform the resulting forecast406

back to the original scale. This transformation is computed by407

summing the forecast ft with the initial conditions xt−1, then408

that value is summed iteratively with each following difference409

forecast in the horizon window.410

C. Deep Learning Models411

A PINN is made up of any general network architecture. Since412

we are forecasting time series, we experiment on architectures413

that utilize gated recurrent units (GRU) units, LSTM units, and414

Transformer units. Layers of these units are accompanied by415

dense fully connected layers, normalization layers, and train-416

ing dropout layers. Each layer includes a nonlinear activation417

function except for some dense layers, which are linear in the418

Transformer architecture. Between the layers, we add dropout419

layers with 5% dropout rate during training for the Transformer420

and 10% for the LSTM. Similarly, we apply a normalization421

layer in between dense and LSTM layers to prevent exploding422

or vanishing gradients. The Transformer block is made of ten423

attention heads. The exact summary of the LSTM-based and424

Transformer-based models can be seen in Tables II and III.425

The GRU-based model architecture is the same as the LSTM426

model. The number of trainable parameters is lesser for the427

GRU compared with the LSTM but is otherwise the same428

structure. The GRU and LSTM models have much fewer weights429

than the Transformer-based model, which takes longer to train.430

We include each layer of the model, the number of trainable431

parameters, and the activation at that layer, if any. The GRU and432

LSTM models are trained for 100 epochs while the Transformer433

model is trained for 200 epochs, due to the increased number of434

trainable weights. A data batch size of 256 was used in all cases.435

To optimize the value in each epoch of back-propagation, the436

Adam optimizer is selected for the Transformer model and root437

mean square propagation (RMSProp) for the LSTM and GRU438

networks. The models are always trained using the same random439

seed to ensure experiments are as uniform as possible.440

Each model, once initialized, is trained to accept the 18441

specified features as input and produce the predicted next step442

for each feature as output. Since each model is trained to produce443

TABLE II
LSTM MODEL ARCHITECTURE

the same outputs it requires as inputs, this is considered a rolling 444

forecast model. In this approach, to forecast further into the 445

future, we may use the model’s own outputs from time t as inputs 446

for forecasting time t+ 1. This forecasting technique depends 447

on accurate initial values. Only the first forecast in a period, 448

t0, is provided with initial conditions, and as time progresses, 449

inherent chaos or model error will compound within forecasts. 450

This method yields models, which are not constrained to a single 451

forecast horizon. Instead, the models are more flexible, and 452

can generically forecast any number of desired periods, once 453

provided initial values. Using the numerical model data as inputs 454

to our deep learning models may be considered self-fulfilling 455

because reanalysis data includes high-quality features assimi- 456

lated with ground truths not yet observed. We point out that the 457

assimilated data and observations are only used in training time 458

and when seeding initial values into the model. The subsequent 459

predictions use the results from the previous prediction cycle. 460

All else is kept equal among the models, so we may measure the 461

effects of our methodology across multiple experiments. 462

To train the models, the loss function for our PINN is designed 463

such that the outputs from numerical models are coupled with 464
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TABLE III
TRANSFORMER MODEL ARCHITECTURE.

buoy-extracted real-world values. To do this, a weighted ratio465

term is used to determine how much of the calculated error comes466

from the residual of buoy observations versus the residual of467

the HYCOM and ERA5 modeled features. This combination is468

completed for all coupled buoy features, i.e., water temperature,469

gust strength, and surface air pressure. Thus, the piece-wise cost470

can be calculated as follows in (2)–(7):471

Δ1 = |ŷobs − yobs| (2)

Δ2 = |ŷobs − fm(t, x, y)| (3)

Ωcoupled feature loss = λ ∗Δ1 + (1− λ) ∗Δ2. (4)

The two Δ terms defined in (2) and (3) represent the absolute472

error between the predicted observation and the observation473

ground truth followed by the absolute error of the predicted474

observation and the numerical model output as defined in (1).475

The two error terms are weighted by λ, as seen in (4). The476

selected λ value represents a ratio to determine how much weight477

is provided to each ground truth. This coupled feature loss is only478

calculated for those features, which have both an observational479

and modeled collection of data available. Through additional480

feature collection, the technique can be extended to couple any481

number of observation features to numeric models482

Ωmodeled feature loss = |ŷmodel − fm(t, x, y)| (5)

Ωobserved feature loss = |ŷobs − yobs|. (6)

The remaining uncoupled features, as seen in (5) and (6), are 483

used to collect loss in a more traditional way. Excluding the cou- 484

pled features from the calculation, numerical feature forecasts 485

are measured against numerical model values only and fore- 486

casted observational data are measured against observational 487

ground truth only. We include additional numerical features in 488

our setup, which were identified in Table I. There do not exist any 489

noncoupled observational features, so Ωobservation forecast loss = 0, 490

in this experiment. There is no λ controlling the coupling ratio in 491

the case of (5) and (6). The final loss function which combines 492

the disparate loss calculations can be as follows: 493

Ωtotal loss = Ωcoupled forecast loss +Ωnumeric forecast loss

+Ωobservation forecast loss. (7)

The addition of a coupled loss component is rationalized by 494

considering that as the λ value approach 0.0, we are training our 495

model to behave more like the numerical model, fm(t, x, y). 496

Conversely, as the λ values approach 1.0, we are promoting 497

forecasts, which more closely resemble the observations, yobs. 498

Expanding the example, when λ = 0.5, the model balances 499

agreement between both sources equally. In our experiments, 500

the ground truth is measured using yobs, so when λ = 1.0, we 501

are essentially training a model while using no regularization 502

strategy. 503

D. Metrics and Testing Strategy 504

For the original data and differenced data setups the SST, 505

gust strength, and air pressure are forecasted over the reserved 506

testing data for final evaluations of each model. Test horizon 507

windows are conducted from one period to eight periods, where 508

an individual period measures data collected every 3 h. There- 509

fore, this manifests as a one-step three hour forecast through an 510

eight-step 24 h forecast since each forecast step is 3 h apart. 511

Using the rolling forecast property mentioned, we record the 512

mean absolute error (MAE) and root mean square error (RMSE) 513

for each forecast period. The MAE is calculated as follows 514

for an individual buoy 1
N

∑N
i=1(|Y p

i − Y t
i |), where N is the 515

total number of time steps forecasted, Y p is the collection of 516

predicted ocean features, and Y t is the collection of ground 517

truth ocean observations. Similarly, the RMSE is computed as 518√
1
N

∑N
i=1((Y

p
i − Y t

i )
2). In analysis, the total MAE and RMSE 519

from our test results are collected from each buoy and then 520

averaged to find the global mean metrics. The best possible 521

model will provide low-value metrics for all forecast periods 522

and features. To verify whether the coupled loss component 523

works as a regularization mechanism, we evaluate for λ values 524

between 0.0 and 1.0 with 0.1 step intervals. Next, we evaluate 525

around the best scoring λ values using 0.02 step intervals. The 526

results gathered in this way may be contrasted with the numerical 527

model outputs from HYCOM and ERA5, which are scored using 528

the same metrics. Using this grid search technique, we are not 529

guaranteed to find the λ value, which yields global minimal error, 530

so we aim to highlight two behaviors instead. The first is that 531

there exists a value of λ, where the RMSE, MAE, or both are 532
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Fig. 1. MAE and RMSE for GRU forecasts from λ = 0.0 to λ = 1.0 (no
regularization). The lowest scoring λ value is displayed in green while the highest
is red. Forecasts are given as the original values.

lesser than λ = 1.0 (no regularization), for at least one feature533

per model. The second is that the selection of best λ is influenced534

by inconsistencies in the observation data, misalignment in the535

numerical model data, and the PINN architecture.536

IV. RESULTS537

We consider which experiments yield the lowest error metrics538

given various PINN model setups, our three physical features539

of interest, and whether the data has been differenced or not.540

Beyond providing an accurate forecast, we are primarily inter-541

ested in the regularization ability of the PINN’s specialized loss542

function. As such, we begin by considering which values of543

λ yield the lowest error metrics. Then, the general forecasting544

ability of our highest performing models will be considered545

for further context. Finally, we will examine the buoy accuracy546

given its geographical region to consider where our method may547

struggle to provide high-quality outputs. In the Appendix, we548

supply Tables VII–XII to display the RMSE results gathered549

from our PINN models trained on various λ values. In the tables,550

each feature from horizons starting with 3 h (one period) and up551

to 24 h (eight periods) are given to see the evolution of error552

over time.553

A. Selection of Best λ Values554

We present the best value for λ given variations in our PINN555

models and the selected coupled feature. A series of figures556

display each λ value and corresponding error metrics per model557

and feature. We consider the original data best λ results for558

the GRU model in Fig. 1, the LSTM model in Fig. 2, and the559

Transformer model in Fig. 3. The λ-based ratio regularization560

successfully managed to reduce the MAE and RMSE of 24 h561

forecasts when compared with λ = 1.0 (no regularization). For562

the GRU and LSTM figures, each evaluated feature displays at563

least one value for λ, which yielded more performant metrics.564

Using the Transformer model, the PINN-style regularization565

yields explicitly worse forecasts for SST and Gust, but air566

pressure has a reduced error when λ = 0.9. In this sense, each567

model has displayed the property of MAE and RMSE reduction568

for at least one feature, using the regularization technique. The569

reason that the Transformer model performs well in the λ = 1.0570

Fig. 2. MAE and RMSE for LSTM forecasts from λ = 0.0 to λ = 1.0 (no
regularization). The lowest scoring λ value is displayed in green while the highest
is red. Forecasts are given as the original values.

Fig. 3. MAE and RMSE for Transformer forecasts from λ = 0.0 to λ = 1.0
(no regularization). The lowest scoring λ value is displayed in green while the
highest is red. Forecasts are given as the original values.

case is because the architecture is sufficiently complex enough 571

to generalize the observations when trained using large amounts 572

of data. However, the results of the air pressure forecasts imply 573

some features benefit from the coupled loss function regardless 574

of model complexity. The LSTM and GRU models are less com- 575

plex and achieve worse test results overall, so the regularization 576

has a larger effect on error reduction. For this reason, there exists 577

a best performing model when λ < 1.0 in all features. 578

We highlight that the best λ values are unique for each 579

experiment. This is true when comparing the separate features 580

in the same model and when comparing the same feature from 581

each model. For example, the best λ values found in the GRU 582

features are 0.9, 0.84, and 0.96, for SST, gust strength, and air 583

pressure, respectively. When comparing by model, the best λ for 584

SST is largely separated at 0.9, 0.68, and 1.0 for GRU, LSTM, 585

and Transformer models, respectively. The uniqueness of each 586

λ selection is problematic in situations where the best λ value 587

significantly differs between features. Each feature is coupled 588

using the same λ value, although an optimal choice for one 589

feature may not be optimal for all features. A multiple λ setup 590

could allow more flexibility toward this problem. 591

In observing the change between λ values and their error 592

metrics, we see some trends in each feature. The SST feature in 593

GRU and LSTM models is inconsistent with many local minima 594

observed. The gust strength feature displays error that is mostly 595

consistent regardless of the selection of λ. However, there is 596
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Fig. 4. MAE and RMSE for GRU forecasts from λ = 0.0 to λ = 1.0 (no
regularization). The lowest scoring λ value is displayed in green while the highest
is red. Forecasts are given as first-order differenced values.

Fig. 5. MAE and RMSE for LSTM forecasts from λ = 0.0 to λ = 1.0 (no
regularization). The lowest scoring λ value is displayed in green while the highest
is red. Forecasts are given as first-order differenced values.

a noticeable decrease in error as λ approaches the discovered597

minimal value. The most obvious trend that occurs in all PINN598

models is the sharp decrease in error of the air pressure feature as599

λ increases. This is the sole case where a regularized Transformer600

model outperforms the λ = 1.0 case. This is likely caused by601

misalignment in the ERA5 model when compared with the602

ground truth. Extremely divergent outliers in ERA5 mean that603

training the surrogate model using numerical model data is a604

poor choice compared with the observations. So, error decreases605

when λ > 0.5 and the PINN produces forecasts more aligned606

with the observations. Still, the ERA5 data are well-fitted outside607

of outlier conditions, so λ < 1.0 promotes a regularizing effect608

on the model. This is an example of how our methodology can609

combine multiple data sources to improve results when each has610

their own biases.611

Comparing the experimental results of the original data612

scheme to the results of the differenced data scheme shows613

varying results. We present the differenced data best λ results614

for the GRU model in Fig. 4, the LSTM model in Fig. 5, and the615

Transformer model in Fig. 6. The λ-based ratio regularization616

scheme reduces MAE and RMSE in all but one case. As before,617

the Transformer yields strictly better results when λ = 1.0 for618

SST. However, the ERA5 features show strictly best results when619

λ = 0.0, achieving lowest scores when the model is only trained620

on numerical data. Considering the GRU and LSTM figures,621

Fig. 6. MAE and RMSE for Transformer forecasts from λ = 0.0 to λ = 1.0
(no regularization). The lowest scoring λ value is displayed in green while the
highest is red. Forecasts are given as first-order differenced values.

each feature displays a minimizing λ that yields lower error 622

metrics than the λ = 1.0 case. The best λ values found overall are 623

typically closer to λ = 0.0. This is the exact opposite behavior 624

when compared with the original results, and the trend is most 625

obvious when considering the air pressure feature. Lower values 626

of λ yield more performant results, although the absolute differ- 627

ence in error is small. Most importantly, each model has shown 628

error reduction for at least two features using the regularization 629

technique. 630

The λ values for SST are chaotic, such as before, and the best 631

value varies greatly per model. Conversely, the error metrics are 632

much lower overall due to the differenced data representation. 633

The behavior of λ regarding the gust strength feature is similar 634

to the original data figures for the GRU and LSTM models. In 635

all, the selection of a wider variety of lower λ values suggests 636

that the rate of change in both datasets are alike. The numerical 637

models also have less interpolated data, which promotes more 638

stable training. Once again, we find that most results display 639

best λ values, which are different between features and models. 640

The one outlier comes from the Transformer model, where SST 641

maintains a best result at λ = 1.0. Wind gust strength and air 642

pressure both display similar values of λ between the GRU and 643

LSTM models, but the SST varies drastically between each. This 644

discussion underpins the idea that both the feature, the model, 645

and the data representation influence the selection of best λ. 646

In this section we considered how the selection of the best λ 647

differs as the parameters of our experiments change. The Trans- 648

former model received the least benefit from λ < 1.0 overall. 649

For the Transformer, the SST feature never benefits from the 650

coupled loss, air pressure is always improved, and gust speed 651

depends on whether the data are differenced or not. Both other 652

models benefit at least somewhat from the regularization in 653

all cases. We learned the benefit of the regularization and the 654

corresponding selection of best λ are tied to the complexity 655

of the model, where models with fewer weights benefit more 656

when using this methodology. Another observation is that values 657

approaching 0.0 for λ tend to yield worse results unless we are 658

considering the differenced data representation. This is due to 659

the way each model is trained to forecast the change between 660

time steps. When taking a first-order difference of the data, a 661
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TABLE IV
ORIGINAL VALUE FORECAST % CHANGE IN RMSE WHEN COMPARING THE

BEST FOUND λ AGAINST λ = 1.0 (NO REGULARIZATION) AND THE

NUMERICAL MODEL (HYCOM/ERA5)

TABLE V
DIFFERENCED VALUE FORECAST % CHANGE IN RMSE WHEN COMPARING

THE BEST FOUND λ AGAINST λ = 1.0 (NO REGULARIZATION) AND THE

NUMERICAL MODEL (HYCOM/ERA5)

larger number of interpolated buoy observation values produces662

an uninformative training environment for differenced data. The663

numerical models, have fewer interpolated values and more664

accurately reflect change from one time to another. Therefore,665

PINNs which act more like the numerical model are more666

performant in this case. Finally, by examining the way the best λ667

changes in each experiment, we find that the feature, the model,668

and the data representation all influence the selection of best λ.669

Otherwise, the best λ selections would be more homogeneous670

overall.671

B. General Forecast Accuracy672

By examining the general forecast accuracy of our models,673

we gain additional insights into the coupled loss technique used674

and the stability of our PINN models. To begin, we consider the675

measured RMSE for the best found λ per feature. We compare676

this error to those derived from the λ = 1.0 case and from677

the numerical models for additional context. To facilitate this678

comparison, we introduce Tables IV for the original value fore-679

casts and V for the differenced value forecasts. In these tables,680

we compare the percent change in RMSE between the best λ681

value and λ = 1.0 in the fourth column. In the final column,682

we compare the best λ value to the numerical models. These 683

values are calculated using the RMSE as found in the eight-step 684

forecast from the Appendix Tables VII–XII. Negative values 685

indicate a reduced error when comparing the best λ value to 686

the λ = 1.0 case or the numerical models. Positive values show 687

when the best λ results are worse than the compared source of 688

error. When the percentage is zero, the best value of λ for that 689

experiment was λ = 1.0. 690

Examining the original value forecast results in Table IV 691

tabulates that this method is rarely more performant than the 692

numerical models. The feature SST is worse than the numerical 693

model by at least 100%, which implies the HYCOM model is 694

well-calibrated to local conditions. When comparing the lower 695

resolution ERA5 model, air pressure and gust strength are less 696

aligned with the recorded observations. As a result, the feature 697

gust speed is up to 37% less accurate when using the PINN 698

models and results are more accurate using all architectures 699

for air pressure. This is encouraging and suggests that our 700

surrogate modeling technique can produce permissible forecasts 701

depending on the feature. The comparison of the best surrogate 702

model to the non-regularized surrogate when λ = 1.0 is more 703

favorable. From the Table, we show that there is a percent 704

decrease in error for most cases. The GRU and LSTM models are 705

more accurate when compared with the nonregularized versions. 706

The air pressure results show that the surrogate outperforms the 707

numerical model only after finding the best λ value. That is, we 708

only outperform the numerical model due to the coupled loss 709

function. The Transformer models showed improved forecasts 710

for air pressure alone. This indicates that a large network with 711

many trainable parameters can still benefit from our technique, 712

but the reduction in error will be less, if there is any at all. 713

Continuing, we consider the percent change in RMSE 714

when experimenting with the differenced data representation in 715

Table V. Overall, when comparing the PINN models to the 716

numeric model, we see improvement when using this data 717

representation. The only comparison, which is still worse than 718

the numerical models is when forecasting the gust speed feature, 719

although the percentage of error is slightly decreased. Almost 720

all the features show decrease in error when comparing the best 721

λ to the model trained when λ = 1.0. The spread of the decrease 722

in error is lesser than when forecasting the original data, with the 723

highest at about 8% and the lowest at 1.6%. There is no situation 724

for this data where the best λ directly causes improvement over 725

the numerical model, but we find an increased performance 726

gap between the deep learning and numerical models in most 727

cases. 728

We also consider the stability of the forecasts, given a single 729

example buoy. In Figs. 7 and 8, we show how the error of our 730

PINNs evolves over the forecast period of 24 h given chaotic 731

features, model architectures, and data representations. These 732

figures capture a subset of ten forecast periods, from time 733

steps 40 to 120, for a single buoy. The ground truth values are 734

reinitialized into the model every eighth time step, hence the ten 735

forecast periods. To select the λ value to represent in the figures, 736

we use the best λ value found for SST. When SST does not 737

have a best λ < 1.0, then the best value for gust strength or air 738

pressure was chosen. This highlights the limiting factor of our 739
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Fig. 7. Numerical and surrogate model MAE for each feature over ten 24-h forecast periods is displayed. We include each PINN with λ = 0.0, λ = 1.0 (no
regularization), and the best found λ. The PINNs are reinitialized with new starting values every eighth period.

technique in its current form, as it cannot utilize multiple values740

for λ. Future explorations into this technique might consider a741

multiple λ setup for more flexibility.742

When examining the original data forecast results for buoy743

42 002 in Fig. 7, it is expected for error to increase over the744

period. Ideally, the error of the best found λ will increase more745

slowly than when λ = 0.0 or λ = 1.0, for each feature. From 746

this figure, we can observe that error increases until the model is 747

realigned with fresh initial values. We see that the forecasts are 748

often worse than the numerical model. They are typically most 749

performant around time steps one or two, when the initial values 750

are still relatively recent. Comparing models and features shows 751
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Fig. 8. Numerical and surrogate model MAE for each feature over ten 24-h forecast periods is displayed. Differenced value forecasts have been transformed back
to the original scale before finding the error. We include each PINN with λ = 0.0, λ = 1.0 (no regularization), and the best found λ. The PINNs are reinitialized
with new starting values every eighth period.
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Fig. 9. Analyzed original features (columns) compared to the generating model (rows) by RMSE given at the geographical buoy location. Error is capped for
SST and air pressure for visualization purposes. Color maps are normalized by each feature for comparative evaluation.

a wide variety of behaviors. The most similar forecasts are found752

when considering the Transformer, when each of the PINN753

models performs almost identically. The GRU models tend to754

disagree the most between each of the specific experiments,755

which makes sense considering it achieves the highest reduction756

in forecast error overall. PINNs are traditionally used to reduce757

numerical instability, and this behavior can be seen when fore-758

casting air pressure using the GRU model. Between time steps759

56 and 64, the best-selected λ shows significantly reduced error760

when comparing to the λ = 1.0 case. The same temporal region761

in the Transformer forecast displays the opposite behavior where762

the nonregularized model performs better than any regularized763

version. This is due to the complexity of the Transformer-764

based architecture, which causes the model to generalize un-765

derlying behaviors more effectively than the GRU or LSTM766

architectures.767

Finally, we compare the differenced value forecast MAE768

scores for buoy 42 002 from the Fig. 8. In the case of the769

Transformer model, we show λ = 0.5 because each feature’s770

best λ lies on the extreme end of either λ = 0.0 or λ = 1.0.771

The main benefit of using the differenced data representation is772

displayed by the reduction in overall error across all models. The773

figure demonstrates how the λ forces the PINN to behave more774

like one data source or the other, evidenced by the fact that the775

MAE found tends to be bound by the other error sources. Overall, 776

error increases more slowly in regions where the forecasted 777

feature remains highly stable over time. Once again, we see that 778

refreshing the initial values reduces error significantly, which is 779

the expected behavior. The error spread between the PINN is 780

much more similar in this case because the models rely more 781

on autocorrelation between forecast periods. Error reduction 782

is significant enough to suggest the regularized models make 783

more informed forecasts on average. It is significant to note 784

that individual plots of forecasts from the best λ model may be 785

less accurate than other setups in specific instances, but error is 786

reduced overall when considering all buoys. 787

In this section, we analyzed the forecasting ability of our 788

models by considering percent reduction in errors and the fore- 789

cast of a single buoy via different experimental permutations. 790

The selection of λ and total amount of error reduction was 791

shown to depend on the model, the features examined, and the 792

data representation used. When compared with models where 793

λ = 1.0, percentage reductions in error were as low as 1.6% 794

and as high as 18.4%. When using the Transformer model, the 795

feature SST never showed improvement over the λ = 1.0 case. 796

The surrogate models always outperform the numerical model 797

for the air pressure feature and outperform in SST forecasting 798

depending on the data representation. We never outperform the 799
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Fig. 10. Analyzed differenced features (columns) compared to the generating model (rows) by RMSE given at the geographical buoy location. Error is capped
for SST and air pressure for visualization purposes. Color maps are normalized by each feature for comparative evaluation.

numerical model when forecasting gust strength. In the case of800

feature air pressure, the error reduction from selecting λ through801

a grid search allows the surrogate PINN model to out-perform the802

numerical model. It is important to restate that the interpolated803

values in the ground truth provide some bias in the test by804

penalizing the numerical models when comparing to those805

interpolated values. In addition, inference based on differenced806

inputs produces more stable estimates of local conditions, i.e.,807

the observations. Our surrogate models benefit from both points,808

which explains the general improvement when compared with809

the numerical model. More importantly, selecting the best810

regularization parameter, λ, yields models that achieve higher811

accuracy, and this is consistent across both data representations.812

We showed how the error in forecasts are reduced on average813

by training the surrogate model using the selected λ value. This814

revealed the way model selection and data representation affects815

the numerical stability over the forecast period. The differenced816

data representation simplifies the problem for the surrogate817

models, so the forecast stability remains similar between models818

and features. The opposite is true in the original data forecasts,819

which is more chaotic and showed disagreements. In all, the820

analysis of these results suggest that our model is relatively821

stable over 24 h periods, but error is often worse than the822

reanalysis models when they are well-fitted to the observation823

data.824

C. Geographical Error Analysis 825

Our final method for comparing the numerical models with 826

our PINNs involves an analysis of buoy RMSE per their geo- 827

graphical position. To this end, we provide two figures, which 828

represent a grid of our models as rows with the forecasted 829

feature as columns. Positional markers reference the latitude and 830

longitude of each buoy, and there is overlap due to the number of 831

buoys. The color bar represents the amount of RMSE calculated 832

for a buoy and is normalized column-wise by the minimum 833

and maximum error generated for the feature by each model. 834

In Fig. 9, we show the results from the original data forecast and 835

in Fig. 10, we show the results from the differenced dataset. One 836

caveat to these figures is that we cap the error of the air pressure 837

feature in both figures to a max value of 10. This is because 838

the ERA5 has an extreme misalignment in outlier areas, which 839

dominates the color interpolation. We cap the error derived from 840

SST to a max value of one in the differenced Fig. 10 for the same 841

reason. 842

The original values forecast results in Fig. 9 show there are 843

some trends among the models. First, the best performing region 844

for all features are the forecasts of buoys clustered around the 845

Caribbean. The Gulf of Mexico region performs similarly but 846

can be slightly less accurate depending on the experiment. The 847

least performant regions tend to be along the North Atlantic 848

East-Coast and various regions around the Pacific West-Coast. 849
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The numerical models are, on average, are extremely well fitted850

to real-world observations. Although, there are cases, possibly851

due to resolution constraints of grid data, where massive influxes852

of error are found. This misalignment shows the benefit of local853

condition forecasting. For example, the numerically modeled854

outliers for air pressure are along the West-Coast. These same855

regions perform well using our technique because we model856

the forecast based on local observed conditions. Geographic857

regions, which are poorly forecasted by a PINN model tend to858

cluster among similarly performing regions. We do not observe859

alternating high- and low-error regions, which would imply860

random forecasts. Instead, we very consistently see gradients of861

low- to high-error regions. This may be explained by considering862

that some regions may pose a modeling challenge due to geog-863

raphy, river runoff, human operations, lack of data, and so on.864

Next, we analyze the difference valued forecast results in Fig.865

10. The results are more homogeneous and more accurate across866

all models and features. Compared with the original forecast,867

similar geographical zones display relatively high errors, show-868

ing these are likely regions of high change. Each of the PINN869

models yields similar error scores, which suggests that they rely870

on low-change forecasts to accurately describe the true value.871

Therefore, the models produce more similar results and are more872

sensitive to chaotic regions. From the figure, we can pick out an873

instance of an outlier buoy in the center of the Caribbean region,874

when forecasting the SST parameter. There, error from HYCOM875

is high while the error from each PINN model is low. In this876

case, the numerical model represents real world conditions and877

error is calculated through interpolated initial values, causing878

inflated metrics. However, this is not the reason for all outliers.879

In the case of air pressure, most high-error regions are a case of880

misalignment in the numerical model.881

By examining the individual buoy error, we learned which882

geographic regions are most difficult to model. We also revealed883

patterns in the similarities between our PINN experiments and884

the numerical models. The figures revealed that the numerical885

models have some regions with high error. The error is mainly886

found when there is misalignment in the numerical models.887

Some error was introduced through our interpolation scheme,888

such as the SST outlier in the Gulf of Mexico. Buoys, which889

received low accuracy forecasts tend to be surrounded by buoys890

with similar metrics, which implies they are within difficult-to-891

model geographical regions. Although the error for the differ-892

enced data representation is lower than when forecasting the893

original values, the buoys with the highest error come from sim-894

ilar regions. When comparing our sparse forecasting technique895

to a full-coverage model, our method is not constrained to a896

grid region, and any arbitrary point may be modeled. Therefore,897

error may be reduced when forecasting regions between vertices,898

without relying on interpolation techniques. The drawback of899

using this sparse forecasting technique is that greater spatial con-900

ditions cannot be deciphered by the observations alone. In this901

way, we tradeoff providing regional context to the PINN model902

for increased forecasting flexibility. The PINN architecture bases903

the forecast off current conditions alone and is independent of904

the buoy’s geography.905

V. CONCLUSION 906

We investigated the ability of the ocean flow model HYCOM 907

and the climate model ERA5 to be used as regularization data for 908

PINN-inspired deep learning models. A special formulation of 909

the loss function yielded comprehensive models for forecasting 910

any number of physical parameters in a sequence-to-sequence 911

model. The techniques demonstrated how multiple ocean and 912

climate features may be forecasted and combined using deep 913

LSTM, GRU, and Transformer physics-informed networks. Our 914

sparse feature forecasting approach yielded more flexible, gener- 915

alized models, which are less constrained to predefined regions. 916

In contrast to other PINN models, we train the models using 917

observation data while regularizing with precomputed numerical 918

models. The significance of this is that we do not need to 919

implement the numerical formulation for use in our framework. 920

In most cases, we improved the surrogate model performance by 921

combining the observation data and numerical models. To assess 922

the models, we set up experimental sparse sequential forecasting 923

procedures for SST, air pressure, and gust strength as observed 924

by free floating buoys. Two separate data representations were 925

investigated, which included the original observed/modeled data 926

and first order differenced versions of the data. Over these 927

experiments, the hyperparameter λ was fine-tuned between 0.0 928

and 1.0 to find the best possible data ratio. We found that models, 929

which have a less complex architecture improved the most from 930

the inclusion of the numerical model regularization. This was 931

shown explicitly by comparing the results of the least complex 932

and most complex architectures of the GRU and Transformer 933

models. The GRU and LSTM models showed improvements 934

after tuning for λ in every case while the Transformer models 935

showed improvement for fewer features. Further, the selection of 936

λ significantly altered the behavior of the PINN models. As the λ 937

value approaches 0.0, the trained model produced results more 938

like the numerical models, while the opposite is true when λ 939

approaches 1.0. Depending on the experiment, we saw improve- 940

ments over the numerical model in forecast error. In favor of our 941

method, the PINN forecasting of air pressure showed improve- 942

ment over the numerical models when the best selection of λ was 943

chosen. Overall, our method improved the numerical stability of 944

the forecasts on average over the horizon period. In the case of 945

the differenced data representation, we saw the stability of each 946

PINN model was similar. Lower valued λ values were most 947

performant in this case, which suggests the numerical model data 948

was more informative overall. This is likely due to fewer inter- 949

polated values from the numerical models when compared with 950

the buoy observations. The differenced data forecasts are the 951

most accurate overall, but the amount of error reduction found 952

when using this data representation was less. Exploring the error 953

geographically showed us that modeling high-change areas of 954

interest is difficult for both the numerical models and our PINNs. 955

This methodology can be used to forecast observations between 956

the vertices of grid-based numerical models. The tradeoff of the 957

increased flexibility is the loss of context of spatial conditions 958

beyond the immediate forecast region. Ongoing work on this 959

methodology continues in several ways. Because the selection 960

of λ changes on a feature-by-feature basis, we should investigate 961
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an approach to allow an independent selection of λ values on a962

per-feature case. Using a grid search for selecting the best λ value963

is currently inefficient. Future improvements to our technique964

will revolve around fine-tuning the λ selection approach to965

reduce computational overhead of the models. Moreover, since966

we formulate new models that combine numerical models with967

observations, our framework leaves room to explore integration968

into a data assimilation scheme. The methodology should be969

expanded to combine multiple numerical models with relevant970

PDEs to see if similar improvements can be found when forecast-971

ing full-coverage models also. Different domain problems and972

experimental setups will yield further insight into this procedure973

for combining multiple sources of data when each has inherent974

limitations.975

APPENDIX A976

124 selected buoy observations from the NOAA archive for977

potential inclusion into train, validation, and test datasets. The978

numbers selected into each set are displayed in Table VI.979

51001, 41002, 41004, 41008, 41009, 41010, 41013, 41025,980

41040, 41041, 41043, 41044, 41046, 41047, 41048, 41049,981

42001, 42002, 42003, 42012, 42019, 42020, 42035, 42036,982

42039, 42040, 42055, 42056, 42057, 42058, 42059, 42060,983

44005, 44007, 44008, 44009, 44011, 44013, 44014, 44017,984

44018, 44020, 44025, 44027, 44065, 44066, 45001, 45002,985

45003, 45004, 45005, 55039, 45006, 45007, 45008, 45012,986

46001, 46002, 46005, 46006, 46011, 46012, 46013, 46014,987

46015, 46022, 46025, 46026, 46027, 46028, 46029, 46035,988

46041, 46042, 46047, 46050, 46053, 46054, 46059, 46060,989

46061, 46066, 46069, 46070, 46071, 46072, 46073, 46075,990

46076, 46077, 46078, 46080, 46081, 46082, 46083, 46084,991

46085, 46086, 46087, 46088, 46089, 51000, 51001, 51002,992

51003, 51004, 51101, 46221, 46214, 46211, 46224, 46215,993

46222, 46213, 46235. 46239, 46240, 46243, 46244, 46232,994

44095, 44100, 42099, and 44024.995

TABLE VI
NUMBER OF BUOYS DISTRIBUTED INTO EACH DATASET

TABLE VII
GRU ORIGINAL FORECASTS PER λ ∈ [0, 1] RMSE RESULTS OVER EIGHT

FORECAST PERIODS (24 H)

996
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TABLE VIII
LSTM ORIGINAL FORECASTS PER λ ∈ [0, 1] RMSE RESULTS OVER EIGHT

FORECAST PERIODS (24 H)

997

TABLE IX
TRANSFORMER ORIGINAL FORECASTS PER λ ∈ [0, 1] RMSE RESULTS OVER

EIGHT FORECAST PERIODS (24 H)

998
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TABLE X
GRU DIFFERENCED FORECASTS PER λ ∈ [0, 1] RMSE RESULTS OVER EIGHT

FORECAST PERIODS (24 H)

999

TABLE XI
LSTM DIFFERENCED FORECASTS PER λ ∈ [0, 1] RMSE RESULTS OVER EIGHT

FORECAST PERIODS (24 H)

1000
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TABLE XII
TRANSFORMER DIFFERENCED FORECASTS PER λ ∈ [0, 1] RMSE RESULTS

OVER EIGHT FORECAST PERIODS (24 H)
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