TechRxiv
IEEE_ACM_Paper_submitted.pdf (1.52 MB)
Download file

MMC-Net: Multi-modal network for cardiac MRI segmentation of ventricular structures, and myocardium

Download (1.52 MB)
preprint
posted on 10.05.2022, 02:45 by G. Jignesh Chowdary, Pratheepan YogarajahPratheepan Yogarajah, Priyanka Chaurasia

Automatic segmentation of multi-modal Cardiac Magnetic Resonance Imaging (CMRI) scans is challenging due to the variant intensity distribution and unclear boundaries between the neighbouring tissues and other organs. The deep convolutional neural networks have shown great potential in medical image segmentation tasks. In this paper, we present a deep convolutional neural network model named Multi-Modal Cardiac Network (MMC-Net) for segmenting three cardiac structures namely right ventricle (RV), left ventricle (LV), and left ventricular myocardium (LVM) from multi-modal CMRI’s. The proposed MMC-Net is designed using a densely connected backbone enabling feature reuse, an atrous convolution module for fusing multi-scale features, and a pixel-classification module for generating the segmentation result. This model was evaluated on a publicly available MS-CMRSeg-2019 challenge dataset in segmentation of RV, LV, and LVM from CMRI scans. The segmentation results from extensive experiments demonstrate our MMC-Net can achieve better segmentation performance compared to other state-of-the-art models, and the existing approaches. Additionally, the generalization ability of the proposed MMC-Net is validated on another publicly available ACDC dataset without fine-tuning. The results demonstrate that the proposed MMC-Net shows a powerful generalisation ability of segmenting RV, LV, and LVM with higher performance.

History

Email Address of Submitting Author

p.yogarajah@ulster.ac.uk

ORCID of Submitting Author

0000-0002-4586-7228

Submitting Author's Institution

Ulster University

Submitting Author's Country

United Kingdom