Jessica Fayne

and 8 more

The forthcoming Surface Water and Ocean Topography (SWOT) satellite and AirSWOT airborne instrument are the first imaging radar-altimeters designed with near-nadir, 35.75 GHz Ka-band InSAR for mapping terrestrial water storage variability. Remotely sensed surface water extents are crucial for assessing such variability, but are confounded by emergent and inundated vegetation along shorelines. However, because SWOT-like measurements are novel, there remains some uncertainty in the ability to detect certain land and water classes. We study the likelihood of misclassification between 15 land cover types and develop the Ka-band Phenomenology Scattering (KaPS) scattering model to simulate changes to radar backscatter as a result of changing surface water fraction and roughness. Using a separability metric, we find that water is five times more distinct compared with dry land classes, but has the potential to be confused with littoral zone and wet soil cover types. The KaPS scattering model simulates AirSWOT backscatter for incidence angles 1-27°, identifying the conditions under which open water is likely to be confused with littoral zone and wet soil cover types. A comparison of KaPS simulated backscatter with AirSWOT observed backscatter shows good overall agreement across the 15 classes (median r2=0.76). KaPS characterization of the sensitivity of near-nadir, Ka-band SAR to small changes in both wet area fraction and surface roughness enables more nuanced classification of inundation area. These results provide additional confidence in the ability of SWOT to classify water inundation extent, and open the door for novel hydrological and ecological applications of future Ka-band SAR missions.

Temilola Fatoyinbo

and 30 more

In 2015 and 2016, the AfriSAR campaign was carried out as a collaborative effort among international space and National Park agencies (ESA, NASA, ONERA, DLR, ANPN and AGEOS) in support of the upcoming ESA BIOMASS, NASA-ISRO Synthetic Aperture Radar (NISAR) and NASA Global Ecosystem Dynamics Initiative (GEDI) missions. The NASA contribution to the campaign was conducted in 2016 with the NASA LVIS (Land Vegetation and Ice Sensor) Lidar, the NASA L-band UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar). A central motivation for the AfriSAR deployment was the common AGBD estimation requirement for the three future spaceborne missions, the lack of sufficient airborne and ground calibration data covering the full range of ABGD in tropical forest systems, and the intercomparison and fusion of the technologies. During the campaign, over 7000 km2 of waveform Lidar data from LVIS and 30000 km2 of UAVSAR data were collected over 10 key sites and transects. In addition, field measurements of forest structure and biomass were collected in sixteen 1 hectare sized plots. The campaign produced gridded Lidar canopy structure products, gridded aboveground biomass and associated uncertainties, Lidar based vegetation canopy cover profile products, Polarimetric Interferometric SAR and Tomographic SAR products and field measurements. Our results showcase the types of data products and scientific results expected from the spaceborne Lidar and SAR missions; we also expect that the AfriSAR campaign data will facilitate further analysis and use of waveform Lidar and multiple baseline polarimetric SAR datasets for carbon cycle, biodiversity, water resources and more applications by the greater scientific community.