Rui Fan

and 14 more

Purpose: To compare the diagnostic accuracy and explainability of a new Vision Transformer deep learning technique, Data-efficient image Transformer (DeiT), and Resnet-50, trained on fundus photographs from the Ocular Hypertension Treatment Study (OHTS) to detect primary open-angle glaucoma (POAG) and to identify the salient areas of the photographs most important for each model’s decision-making process. Study Design: Evaluation of a diagnostic technology Subjects, Participants, and/or Controls: 66,715 photographs from 1,636 OHTS participants and an additional five external datasets of 16137 photographs of healthy and glaucoma eyes. Methods, Intervention, or Testing: DeiT models were trained to detect five ground truth OHTS POAG classifications: OHTS Endpoint Committee POAG determinations due to disc changes (Model 1), visual field changes (Model 2), or either disc or visual field changes (Model 3) and reading center determinations based on disc (Model 4) and visual fields (Model 5). The best-performing DeiT models were compared to ResNet-50 on OHTS and five external datasets. Main Outcome Measures: Diagnostic performance was compared using areas under the receiver operating characteristic curve (AUROC) and sensitivities at fixed specificities. The explainability of the DeiT and ResNet-50 models was compared by evaluating the attention maps derived directly from DeiT to 3 gradient-weighted class activation map generation strategies. Results: Compared to our best-performing ResNet-50 models, the DeiT models demonstrated similar performance on the OHTS test sets for all five-ground truth POAG labels; AUROC ranged from 0.82 (Model 5) to 0.91 (Model 1). However, the AUROC of DeiT was consistently higher than ResNet-50 on the five external datasets. For example, AUROC for the main OHTS endpoint (Model 3) was between 0.08 and 0.20 higher in the DeiT compared to ResNet-50 models. The saliency maps from the DeiT highlight localized areas of the neuroretinal rim, suggesting the use of important clinical features for classification, while the same maps in the ResNet-50 models show a more diffuse, generalized distribution around the optic disc, Conclusions: Vision transformer has the potential to improve the generalizability and explainability of deep learning models for the detection of eye disease and possibly other medical conditions that rely on imaging modalities for clinical diagnosis and management.

Rui Fan

and 16 more

To investigate the diagnostic accuracy of deep learning (DL) algorithms to detect primary open-angle glaucoma (POAG) trained on fundus photographs from the Ocular Hypertension Treatment Study (OHTS). 66,715 photographs from 3,272 eyes were used to train and test a ResNet-50 model to detect the OHTS Endpoint Committee POAG determination based on optic disc (n=287 eyes, 3,502 photographs) and/or visual field (n=198 eyes, 2,300 visual fields) changes. OHTS training, validation and testing sets were randomly determined using an 85-5-10 percentage split by subject. Three independent test sets were used to estimate the generalizability of the model: UCSD Diagnostic Innovations in Glaucoma Study (DIGS, USA), ACRIMA (Spain) and Large-scale Attention-based Glaucoma (LAG, China). The DL model achieved an AUROC (95% CI) of 0.88 (0.82, 0.92) for the overall OHTS POAG endpoint. For the OHTS endpoints based on optic disc changes or visual field changes, AUROCs were 0.91 (0.88, 0.94) and 0.86 (0.76, 0.93), respectively. False-positive rates (at 90% specificity) were higher in photographs of eyes that later developed POAG by disc or visual field (19.1%) compared to eyes that did not develop POAG (7.3%) during their OHTS follow-up. The diagnostic accuracy of the DL model developed on the OHTS optic disc endpoint applied to 3 independent datasets was lower with AUROC ranging from 0.74 to 0.79. High diagnostic accuracy of the current model suggests that DL can be used to automate the determination of POAG for clinical trials and management. In addition, the higher false-positive rate in early photographs of eyes that later developed POAG suggests that DL models detected POAG in some eyes earlier than the OHTS Endpoint Committee.

Rui Fan

and 3 more

Manual visual inspection, typically performed by certified inspectors, is still the main form of road pothole detection. This process is, however, not only tedious, time-consuming and costly, but also dangerous for the inspectors. Furthermore, the road pothole detection results are always subjective, because they depend entirely on the inspector’s experience. In this paper, we first introduce a disparity (or inverse depth) image processing module, named quasi inverse perspective transformation (QIPT), which can make the damaged road areas become highly distinguishable. Then, we propose a novel attention aggregation (AA) framework, which can improve the semantic segmentation networks for better road pothole detection, by taking the advantages of different types of attention modules. Moreover, we develop a novel training set augmentation technique based on adversarial domain adaptation, where synthetic road RGB images and transformed road disparity (or inverse depth) images are generated to enhance the training of semantic segmentation networks. The experimental results illustrate that, firstly, the disparity (or inverse depth) images transformed by our QIPT module become more informative; secondly, the adversarial domain adaptation can not only significantly improve the performance of the state-of-the-art semantic segmentation networks, but also accelerate their convergence. In addition, AA-UNet and AA-RTFNet, our best performing implementations, respectively outperform all other state-of-the-art single-modal and data-fusion networks for road pothole detection.