Cara Welker

and 2 more

Individuals using passive prostheses typically rely heavily on their biological limb to complete sitting and standing tasks, leading to slower completion times and increased rates of osteoarthritis and lower back pain. Powered prostheses can address these challenges, but have control methods that divide sit-stand transitions into discrete phases, limiting user synchronization across the motion and requiring long manual tuning times. This paper extends our preliminary work using a thigh-based phase variable to parameterize optimized data-driven impedance parameter trajectories for sitting, standing, and walking, with only two classification modes. We decouple the stand-to-sit and sit-to-stand equilibrium angles through a knee velocity-dependent scaling term, reducing the model fitting error by approximately half compared to our previous results. We then experimentally validate the controller with three individuals with above-knee amputation performing sitting and standing transitions to/from three different chair heights. We show that our controller implemented on a powered knee-ankle prosthesis produced biomimetic joint mechanics, resulting in significantly reduced sit/stand loading asymmetry and time to complete a 5x sit-to-stand task compared to participants’ passive prostheses. Integration with a previously developed walking controller also allowed sit/walk transitions between different chair heights. The controller’s biomimetic assistance may reduce the overreliance on the biological limb caused by inadequate passive prostheses, helping improve mobility for people with above-knee amputations.

Thomas Best

and 3 more

© 2022 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI (identifier) 10.1109/TRO.2022.3226887 Abstract: Most impedance-based walking controllers for powered knee-ankle prostheses use a finite state machine with dozens of user-specific parameters that require manual tuning by technical experts. These parameters are only appropriate near the task (e.g. walking speed and incline) at which they were tuned, necessitating many different parameter sets for variable-task walking. In contrast, this paper presents a data-driven, phase-based controller for variable-task walking that uses continuously-variable impedance control during stance and kinematic control during swing to enable biomimetic locomotion. After generating a data-driven model of variable joint impedance with convex optimization, we implement a novel task-invariant phase variable and real-time estimates of speed and incline to enable autonomous task adaptation. Experiments with above-knee amputee participants (N=2) show that our data-driven controller 1) features highly-linear phase estimates and accurate task estimates, 2) produces biomimetic kinematic and kinetic trends as task varies, leading to low errors relative to able-bodied references, and 3) produces biomimetic joint work and cadence trends as task varies. We show that the presented controller meets and often exceeds the performance of a benchmark finite state machine controller for our two participants, without requiring manual impedance tuning.