A Ahmed

and 4 more

This paper proposes a multiple targets localization scheme using a clustered wireless sensor network (WSN) for terrestrial and underwater environments. In the considered system, sensors measure the total energy emitted by the targets and transmit quantized versions of their measurements to a data central device (DCD) with the assistance of intermediate cluster-heads (CHDs), which employ decode-and-forward relaying (DFR). Upon data collection from the sensors, the DCD performs the localization process, which involves estimating the number and positions of the targets. The data transmission from the sensors to the CHDs takes place through an imperfect medium, which is characterized by a Rician fading model. The penalized maximum likelihood estimator (PMLE), also known as regularized maximum likelihood estimation (MLE), is applied at the DCD to provide optimal estimates for the number and locations of targets. Furthermore, a suboptimal estimator is derived from PMLE, which can offer comparable performance under certain operating conditions with significantly reduced computational complexity. Cramer-Rao lower bound (CRLB) is derived to serve as an asymptotic benchmark for the root mean square error (RMSE) of the estimators in addition to the centroid-based localization benchmark. Monte Carlo simulation is used to evaluate the performance of the proposed estimation techniques under various system conditions. The results show that PMLE is an effective tool for estimating the number and locations of the targets. Additionally, it is demonstrated that the RMSE of the proposed estimation approaches the CRLB for a large number of sensors and high signal-to-noise ratio.

Arafat Al-Dweik

and 2 more

Arafat Al-Dweik

and 5 more

Tasneem Assaf

and 8 more

Physical layer security (PLS) can be adopted for efficient key sharing in secured wireless systems. The random nature of the wireless channel and channel reciprocity (CR) are the main pillars for realizing PLS techniques. However, for applications that involve air-to-air (A2A) transmission, such as unmanned aerial vehicle (UAV) applications, the channel does not generally have sufficient randomness to enable reliable key generation. Therefore, this work proposes a novel system design to mitigate the channel randomness constraint and enable high-rate secret key generation (SKG) process. The proposed system integrates physically unclonable functions (PUFs) and CR principle to securely exchange secret keys between two nodes. Moreover, an adaptive and controllable artificial fading (AF) level with interleaving is used to mitigate the impact of low randomness variations in the wireless channel. The proposed system can operate efficiently even when the channel is nearly flat or time invariant. Consequently, the time required for generating and sharing a key is significantly shorter than conventional techniques. We also propose a novel bit extraction scheme that reduces the number of overhead bits required to share the intermediate keys. The obtained Monte Carlo simulation results show that a key agreement can be reached at the first trial for moderate and high signal-to-noise ratios (SNRs), which is substantially faster than other PLS techniques. Moreover, the results show that inducing AF into static channels reduces the mismatch ratio between the generated secret sequences and degrades the eavesdropper’s capability to predict the secret keys.