Duc Thien Nguyen

and 1 more

Yuki Akiyama

and 2 more

Yuki Akiyama

and 1 more

Minh Vu

and 2 more

This study addresses the problem of selecting dynamically, at each time instance, the “optimal” p-norm to combat outliers in linear adaptive filtering without any knowledge on the potentially timevarying probability density function of the outliers. To this end, an online and data-driven framework is designed via kernel-based reinforcement learning (KBRL). Novel Bellman mappings on reproducing kernel Hilbert spaces (RKHSs) are introduced that need no knowledge on transition probabilities of Markov decision processes, and are nonexpansive with respect to the underlying Hilbertian norm. An approximate policy-iteration framework is finally offered via the introduction of a finite-dimensional affine superset of the fixed-point set of the proposed Bellman mappings. The well-known “curse of dimensionality” in RKHSs is addressed by building a basis of vectors via an approximate linear dependency criterion. Numerical tests on synthetic data demonstrate that the proposed framework selects always the “optimal” p-norm for the outlier scenario at hand, outperforming at the same time several non-RL and KBRL schemes. ——- © 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Yuki Akiyama

and 2 more

This paper introduces a non-parametric learning framework to combat outliers in online, multi-output, and nonlinear regression tasks. A hierarchical-optimization problem underpins the learning task: Search in a reproducing kernel Hilbert space (RKHS) for a function that minimizes a sample average $\ell_p$-norm ($1 \leq p \leq 2$) error loss on data contaminated by noise and outliers, subject to side information that takes the form of affine constraints defined as the set of minimizers of a quadratic loss on a finite number of faithful data devoid of noise and outliers. To surmount the computational obstacles inflicted by the choice of loss and the potentially infinite dimensional RKHS, approximations of the $\ell_p$-norm loss, as well as a novel twist of the criterion of approximate linear dependency are devised to keep the computational-complexity footprint of the proposed algorithm bounded over time. Numerical tests on datasets showcase the robust behavior of the advocated framework against different types of outliers, under a low computational load, while satisfying at the same time the affine constraints, in contrast to the state-of-the-art methods which are constraint agnostic. ——- © 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Cong Ye

and 4 more

This work exploits Riemannian manifolds to build a sequential-clustering framework able to address a wide variety of clustering tasks in dynamic multilayer (brain) networks via the information extracted from their nodal time-series. The discussion follows a bottom-up path, starting from feature extraction from time-series and reaching up to Riemannian manifolds (feature spaces) to address clustering tasks such as state clustering, community detection (a.k.a. network-topology identification), and subnetwork-sequence tracking. Kernel autoregressive-moving-average modeling and kernel (partial) correlations serve as case studies of generating features in the Riemannian manifolds of Grassmann and positive-(semi)definite matrices, respectively. Feature point-clouds form clusters which are viewed as submanifolds according to Riemannian multi-manifold modeling. A novel sequential-clustering scheme of Riemannian features is also established: feature points are first sampled in a non-random way to reveal the underlying geometric information, and, then, a fast sequential-clustering scheme is brought forth that takes advantage of Riemannian distances and the angular information on tangent spaces. By virtue of the landmark points and the sequential processing of the Riemannian features, the computational complexity of the framework is rendered free from the length of the available time-series data. The effectiveness and computational efficiency of the proposed framework is validated by extensive numerical tests against several state-of-the-art manifold-learning and brain-network-clustering schemes on synthetic as well as real functional-magnetic-resonance-imaging (fMRI) and electro-encephalogram (EEG) data.